Biology Open | 卷:6 |
The Golgi matrix protein giantin is required for normal cilia function in zebrafish | |
Dylan J. M. Bergen1  Nicola L. Stevenson1  David J. Stephens1  Roderick E. H. Skinner2  Christina L. Hammond2  | |
[1] Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; | |
[2] School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; | |
关键词: Golgi; Golgi matrix; Cilia; Zebrafish; | |
DOI : 10.1242/bio.025502 | |
来源: DOAJ |
【 摘 要 】
The Golgi is essential for glycosylation of newly synthesised proteins including almost all cell-surface and extracellular matrix proteoglycans. Giantin, encoded by the golgb1 gene, is a member of the golgin family of proteins that reside within the Golgi stack, but its function remains elusive. Loss of function of giantin in rats causes osteochondrodysplasia; knockout mice show milder defects, notably a cleft palate. In vitro, giantin has been implicated in Golgi organisation, biosynthetic trafficking, and ciliogenesis. Here we show that loss of function of giantin in zebrafish, using either morpholino or knockout techniques, causes defects in cilia function. Giantin morphants have fewer cilia in the neural tube and those remaining are longer. Mutants have the same number of cilia in the neural tube but these cilia are also elongated. Scanning electron microscopy shows that loss of giantin results in an accumulation of material at the ciliary tip, consistent with a loss of function of retrograde intraflagellar transport. Mutants show milder defects than morphants consistent with adaptation to loss of giantin.
【 授权许可】
Unknown