Cilia | |
Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8 | |
Lotte B Pedersen2  Søren T Christensen2  Stine K Morthorst2  Kenneth B Schou1  | |
[1] Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark;Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark | |
关键词: MSP domain; Rabin8; Centrosome; Golgi; TPR repeat; Rab8; Cilia; Vesicle trafficking; ASH domain; TRAPPII complex; | |
Others : 821191 DOI : 10.1186/2046-2530-3-6 |
|
received in 2013-04-17, accepted in 2014-05-22, 发布年份 2014 | |
【 摘 要 】
Background
Assembly of primary cilia relies on vesicular trafficking towards the cilium base and intraflagellar transport (IFT) between the base and distal tip of the cilium. Recent studies have identified several key regulators of these processes, including Rab GTPases such as Rab8 and Rab11, the Rab8 guanine nucleotide exchange factor Rabin8, and the transport protein particle (TRAPP) components TRAPPC3, -C9, and -C10, which physically interact with each other and function together with Bardet Biedl syndrome (BBS) proteins in ciliary membrane biogenesis. However, despite recent advances, the exact molecular mechanisms by which these proteins interact and target to the basal body to promote ciliogenesis are not fully understood.
Results
We surveyed the human proteome for novel ASPM, SPD-2, Hydin (ASH) domain-containing proteins. We identified the TRAPP complex subunits TRAPPC8, -9, -10, -11, and -13 as novel ASH domain-containing proteins. In addition to a C-terminal ASH domain region, we predict that the N-terminus of TRAPPC8, -9, -10, and -11, as well as their yeast counterparts, consists of an α-solenoid bearing stretches of multiple tetratricopeptide (TPR) repeats. Immunofluorescence microscopy analysis of cultured mammalian cells revealed that exogenously expressed ASH domains, as well as endogenous TRAPPC8, localize to the centrosome/basal body. Further, depletion of TRAPPC8 impaired ciliogenesis and GFP-Rabin8 centrosome targeting.
Conclusions
Our results suggest that ASH domains confer targeting to the centrosome and cilia, and that TRAPPC8 has cilia-related functions. Further, we propose that the yeast TRAPPII complex and its mammalian counterpart are evolutionarily related to the bacterial periplasmic trafficking chaperone PapD of the usher pili assembly machinery.
【 授权许可】
2014 Schou et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140712065938266.pdf | 3791KB | download | |
Figure 6. | 84KB | Image | download |
Figure 5. | 70KB | Image | download |
Figure 4. | 65KB | Image | download |
Figure 3. | 160KB | Image | download |
Figure 2. | 26KB | Image | download |
Figure 1. | 109KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Satir P, Pedersen LB, Christensen ST: The primary cilium at a glance. J Cell Sci 2010, 123:499-503.
- [2]Sorokin S: Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 1962, 15:363-377.
- [3]Pedersen LB, Veland IR, Schrøder JM, Christensen ST: Assembly of primary cilia. Dev Dyn 2008, 237:1993-2006.
- [4]Ghossoub R, Molla-Herman A, Bastin P, Benmerah A: The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 2011, 103:131-144.
- [5]Clement CA, Ajbro KD, de Jesus MPR H, Koefoed K, Vestergaard ML, Veland IR, Pedersen LB, Benmerah A, Andersen CY, Larsen LA, Christensen ST: Regulation of TGFβ signaling by endocytosis at the pocket region of the primary cilium. Cell Rep 2013, 3:1806-1814.
- [6]Hildebrandt F, Benzing T, Katsanis N: Ciliopathies. New Engl J Med 2011, 364:1533-1543.
- [7]Waters AM, Beales PL: Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 2011, 26:1039-1056.
- [8]Tobin JL, Beales PL: Bardet-Biedl syndrome: beyond the cilium. Pediatr Nephrol 2007, 22:926-936.
- [9]Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK: A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007, 129:1201-1213.
- [10]Loktev AV, Zhang Q, Beck JS, Searby CC, Scheetz TE, Bazan JF, Slusarski DC, Sheffield VC, Jackson PK, Nachury MV: A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev Cell 2008, 15:854-865.
- [11]Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB: The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 2009, 187:1117-1132.
- [12]Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV: The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 2010, 141:1208-1219.
- [13]Hsiao YC, Tuz K, Ferland RJ: Trafficking in and to the primary cilium. Cilia 2012, 1:4. BioMed Central Full Text
- [14]Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, Sheffield VC, Scheller RH, Jackson PK: Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci U S A 2011, 108:2759-2764.
- [15]Hattula K, Furuhjelm J, Arffman A, Peranen J: A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol Biol Cell 2002, 13:3268-3280.
- [16]Knodler A, Feng S, Zhang J, Zhang X, Das A, Peranen J, Guo W: Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci U S A 2010, 107:6346-6351.
- [17]Yu S, Liang Y: A trapper keeper for TRAPP, its structures and functions. Cell Mol Life Sci 2012, 69:3933-3944.
- [18]Choi C, Davey M, Schluter C, Pandher P, Fang Y, Foster LJ, Conibear E: Organization and assembly of the TRAPPII complex. Traffic 2011, 12:715-725.
- [19]Scrivens PJ, Noueihed B, Shahrzad N, Hul S, Brunet S, Sacher M: C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Mol Biol Cell 2011, 22:2083-2093.
- [20]Zong M, Wu XG, Chan CW, Choi MY, Chan HC, Tanner JA, Yu S: The adaptor function of TRAPPC2 in mammalian TRAPPs explains TRAPPC2-associated SEDT and TRAPPC9-associated congenital intellectual disability. PLoS ONE 2011, 6:e23350.
- [21]Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G: Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol 2012, 199:1083-1101.
- [22]Feng S, Knodler A, Ren J, Zhang J, Zhang X, Hong Y, Huang S, Peranen J, Guo W: A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J Biol Chem 2012, 287:15602-15609.
- [23]Ruellas AC, Pithon MM, Oliveira DD, Oliveira AM: Lowe syndrome: literature review and case report. J Orthod 2008, 35:156-160.
- [24]Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M: Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. EMBO J 2006, 25:3750-3761.
- [25]Fukuda M, Kanno E, Ishibashi K, Itoh T: Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 2008, 7:1031-1042.
- [26]Hou X, Hagemann N, Schoebel S, Blankenfeldt W, Goody RS, Erdmann KS, Itzen A: A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J 2011, 30:1659-1670.
- [27]Ponting CP: A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics 2006, 22:1031-1035.
- [28]Tarr DE, Scott AL: MSP domain proteins. Trends Parasitol 2005, 21:224-231.
- [29]Bork P, Holm L, Sander C: The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 1994, 242:309-320.
- [30]Coon BG, Hernandez V, Madhivanan K, Mukherjee D, Hanna CB, Barinaga-Rementeria Ramirez I, Lowe M, Beales PL, Aguilar RC: The Lowe syndrome protein OCRL1 is involved in primary cilia assembly. Hum Mol Genet 2012, 21:1835-1847.
- [31]Lechtreck KF, Witman GB: Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 2007, 176:473-482.
- [32]Dawe HR, Shaw MK, Farr H, Gull K: The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules. BMC Biol 2007, 5:33. BioMed Central Full Text
- [33]Lechtreck KF, Delmotte P, Robinson ML, Sanderson MJ, Witman GB: Mutations in Hydin impair ciliary motility in mice. J Cell Biol 2008, 180:633-643.
- [34]Mahmood S, Ahmad W, Hassan MJ: Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 2011, 6:39. BioMed Central Full Text
- [35]Waksman G, Hultgren SJ: Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 2009, 7:765-774.
- [36]HHpred: Homology detection & structure prediction by HMM-HMM comparison. http://toolkit.tuebingen.mpg.de/hhpred webcite
- [37]Soding J, Biegert A, Lupas AN: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005, 33:W244-W248.
- [38]MAFFT: MAFFT. http://myhits.isb-sib.ch/cgi-bin/mafft webcite
- [39]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:3059-3066.
- [40]Jalview: Jalview. http://www.jalview.org/ webcite
- [41]Modeller: Modeller. http://toolkit.tuebingen.mpg.de/modeller webcite
- [42]Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M: Evaluation of comparative protein modeling by MODELLER. Proteins 1995, 23:318-326.
- [43]Schrøder JM, Larsen J, Komarova Y, Akhmanova A, Thorsteinsson RI, Grigoriev I, Manguso R, Christensen ST, Pedersen SF, Geimer S, Pedersen LB: EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms. J Cell Sci 2011, 124:2539-2551.
- [44]Schrøder JM, Schneider L, Christensen ST, Pedersen LB: EB1 is required for primary cilia assembly in fibroblasts. Curr Biol 2007, 17:1134-1139.
- [45]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40:D290-D301.
- [46]PDB: Protein Data Bank. http://www.pdb.org webcite
- [47]HNN: HNN secondary structure prediction method. http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_hnn.html webcite
- [48]TPRpred: TPRpred. http://toolkit.tuebingen.mpg.de/tprpred webcite
- [49]Yip CK, Berscheminski J, Walz T: Molecular architecture of the TRAPPII complex and implications for vesicle tethering. Nat Struct Mol Biol 2010, 17:1298-1304.
- [50]Saunders RD, Avides MC, Howard T, Gonzalez C, Glover DM: The Drosophila gene abnormal spindle encodes a novel microtubule-associated protein that associates with the polar regions of the mitotic spindle. J Cell Biol 1997, 137:881-890.
- [51]Hu WH, Pendergast JS, Mo XM, Brambilla R, Bracchi-Ricard V, Li F, Walters WM, Blits B, He L, Schaal SM, Bethea JR: NIBP, a novel NIK and IKK(beta)-binding protein that enhances NF-(kappa)B activation. J Biol Chem 2005, 280:29233-29241.
- [52]Marangi G, Leuzzi V, Manti F, Lattante S, Orteschi D, Pecile V, Neri G, Zollino M: TRAPPC9-related autosomal recessive intellectual disability: report of a new mutation and clinical phenotype. Eur J Hum Genet 2013, 21:229-232.
- [53]Bogershausen N, Shahrzad N, Chong JX, von Kleist-Retzow JC, Stanga D, Li Y, Bernier FP, Loucks CM, Wirth R, Puffenberger EG, Hegele RA, Schreml J, Lapointe G, Keupp K, Brett CL, Anderson R, Hahn A, Innes AM, Suchowersky O, Mets MB, Nurnberg G, McLeod DR, Thiele H, Waggoner D, Altmuller J, Boycott KM, Schoser B, Nurnberg P, Ober C, Heller R, et al.: Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability. Am J Hum Genet 2013, 93:181-190.
- [54]Taschner M, Bhogaraju S, Lorentzen E: Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2012, 83:S12-S22.
- [55]Pampliega O, Orhon I, Patel B, Sridhar S, Diaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P, Cuervo AM: Functional interaction between autophagy and ciliogenesis. Nature 2013, 502:194-200.
- [56]Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B, Zhong Q: Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 2013, 502:254-257.
- [57]Jekely G, Arendt D: Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 2006, 28:191-198.
- [58]Satir P, Mitchell DR, Jekely G: How did the cilium evolve? Curr Top Dev Biol 2008, 85:63-82.