Cellular Physiology and Biochemistry | |
Chondroprotective Effects of Hyaluronic Acid-Chitosan Nanoparticles Containing Plasmid DNA Encoding Cytokine Response Modifier A in a Rat Knee Osteoarthritis Model | |
Pang-hu Zhou1  | |
关键词: Cytokine response modifer A; Hyaluronic acid; Chitosan; Nanoparticles; Gene delivery; Osteoarthritis; | |
DOI : 10.1159/000490217 | |
学科分类:分子生物学,细胞生物学和基因 | |
来源: S Karger AG | |
【 摘 要 】
Background/Aims Interleukin (IL)-1β plays an essential role in the pathophysiology of osteoarthritis (OA). Cytokine response modifier A (CrmA) can prevent the generation of active IL-1β. This study aimed to explore the chondroprotective effects of hyaluronic acid-chitosan nanoparticles containing plasmid DNA encoding CrmA (HA/CS-CrmA) in a rat OA model. Methods HA/CS-CrmA nanoparticles were synthesized through the complex coacervation of cationic polymers. The characteristics, toxicity, and transfection of the nanoparticles were investigated. Furthermore, the potential effects of HA/CS-CrmA nanoparticles were evaluated via a rat anterior cruciate ligament transection (ACLT) model of OA. Cartilage damage and synovial inflammation were assessed by safranin O/fast green and hematoxylin and eosin staining. Type II collagen in cartilage was measured by immunohistochemistry, and the expression levels of IL-1β, matrix metalloproteinase (MMP)-3, and MMP-13 in synovial tissue were detected by western blot. Results The HA/CS-CrmA nanoparticles, which effectively entrapped plasmid DNA, showed an adequate size (100-300 nm) and a regular spherical shape. The nanoparticles safely transfected synoviocytes and released plasmid DNA in a sustained manner over 3 weeks. Additionally, HA/CS-CrmA nanoparticles significantly inhibited cartilage damage, synovial inflammation, and the loss of type II collagen induced by ACLT. The expression levels of IL-1β, MMP-3, and MMP-13 in synovial tissue were dramatically down-regulated by HA/CS-CrmA nanoparticles. Conclusions These results suggested that HA/CS-CrmA nanoparticles could attenuate cartilage destruction and protect against early OA by inhibiting synovial inflammation via inhibition of IL-1β generation.
【 授权许可】
CC BY-NC-ND
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910258133610ZK.pdf | 1559KB | download |