期刊论文详细信息
Cellular Physiology and Biochemistry
VEGF-A and VEGF-B Coordinate the Arteriogenesis to Repair the Infarcted Heart with Vagus Nerve Stimulation
Yan-xia Lv1 
关键词: Myocardial infarction;    Vagal nerve stimulation;    Angiogenesis;    VEGF-A;    VEGF-B;   
DOI  :  10.1159/000491775
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background/Aims Vagus nerve stimulation (VNS) suppresses arrhythmic activity and minimizes cardiomyocyte injury. However, how VNS affects angiogenesis/arteriogenesis in infarcted hearts, is poorly understood. Methods Myocardial infarction (MI) was achieved by ligation of the left anterior descending coronary artery (LAD) in rats. 7 days after LAD, stainless-steel wires were looped around the left and right vagal nerve in the neck for vagus nerve stimulation (VNS). The vagal nerve was stimulated with regular pulses of 0.2ms duration at 20 Hz for 10 seconds every minute for 4 hours, and then ACh levels by ELISA in cardiac tissue and serum were evaluated for its release after VNS. Three and 14 days after VNS, Real-time PCR, immunostaining and western blot were respectively used to determine VEGF-A/B expressions and α-SMA- and CD31-postive vessels in VNS-hearts with pretreatment of α7-nAChR blocker mecamylamine (10 mg/kg, ip) or mACh-R blocker atropine (10 mg/kg, ip) for 1 hour. The coronary function and left ventricular performance were analyzed by Langendorff system and hemodynamic parameters in VNS-hearts with pretreatment of VEGF-A/B-knockdown or VEGFR blocker AMG706. Coronary arterial endothelial cells proliferation, migration and tube formation were evaluated for angiogenesis following the stimulation of VNS in coronary arterial smooth muscle cells (VSMCs). Results VNS has been shown to stimulate VEGF-A and VEGF-B expressions in coronary arterial smooth muscle cells (VSMCs) and endothelial cells (ECs) with an increase of α-SMA- and CD31-postive vessel number in infarcted hearts. The VNS-induced VEGF-A/B expressions and angiogenesis were abolished by m-AChR inhibitor atropine and α7-nAChR blocker mecamylamine in vivo. Interestingly, knockdown of VEGF-A by shRNA mainly reduced VNS-mediated formation of CD31+ microvessels. In contrast, knockdown of VEGF-B powerfully abrogated VNS-induced formation of α-SMA+ vessels. Consistently, VNS-induced VEGF-A showed a greater effect on EC tube formation as compared to VNS-induced VEGF-B. Moreover, VEGF-A promoted EC proliferation and VSMC migration while VEGF-B induced VSMC proliferation and EC migration in vitro. Mechanistically, vagal neurotransmitter acetylcholine stimulated VEGF-A/B expressions through m/nACh-R/PI3K/Akt/Sp1 pathway in EC. Functionally, VNS improved the coronary function and left ventricular performance. However, blockade of VEGF receptor by antagonist AMG706 or knockdown of VEGF-A or VEGF-B by shRNA significantly diminished the beneficial effects of VNS on ventricular performance. Conclusion VNS promoted angiogenesis/arteriogenesis to repair the infracted heart through the synergistic effects of VEGF-A and VEGF-B.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201910250014849ZK.pdf 2843KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:11次