期刊论文详细信息
PLoS Pathogens
SIRT1-PGC1α-NFκB Pathway of Oxidative and Inflammatory Stress during Trypanosoma cruzi Infection: Benefits of SIRT1-Targeted Therapy in Improving Heart Function in Chagas Disease
Lisa Yi Liang1  Jian-jun Wen1  Nisha Jain Garg1  Xianxiu Wan1  Sue-Jie Koo2 
[1] Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas;Department of Pathology, UTMB, Galveston, Texas
关键词: Trypanosoma cruzi;    Mitochondria;    Mitochondrial DNA;    Respiratory infections;    Heart;    Inflammation;    Myocardium;    Inflammatory diseases;   
DOI  :  10.1371/journal.ppat.1005954
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

Chronic chagasic cardiomyopathy (CCM) is presented by increased oxidative/inflammatory stress and decreased mitochondrial bioenergetics. SIRT1 senses the redox changes and integrates mitochondrial metabolism and inflammation; and SIRT1 deficiency may be a major determinant in CCM. To test this, C57BL/6 mice were infected with Trypanosoma cruzi (Tc), treated with SIRT1 agonists (resveratrol or SRT1720), and monitored during chronic phase (~150 days post-infection). Resveratrol treatment was partially beneficial in controlling the pathologic processes in Chagas disease. The 3-weeks SRT1720 therapy provided significant benefits in restoring the left ventricular (LV) function (stroke volume, cardiac output, ejection fraction etc.) in chagasic mice, though cardiac hypertrophy presented by increased thickness of the interventricular septum and LV posterior wall, increased LV mass, and disproportionate synthesis of collagens was not controlled. SRT1720 treatment preserved the myocardial SIRT1 activity and PGC1α deacetylation (active-form) that were decreased by 53% and 9-fold respectively, in chagasic mice. Yet, SIRT1/PGC1α-dependent mitochondrial biogenesis (i.e., mitochondrial DNA content, and expression of subunits of the respiratory complexes and mtDNA replication machinery) was not improved in chronically-infected/SRT1720-treated mice. Instead, SRT1720 therapy resulted in 2-10-fold inhibition of Tc-induced oxidative (H2O2 and advanced oxidation protein products), nitrosative (inducible nitric oxide synthase, 4-hydroxynonenal, 3-nitrotyrosine), and inflammatory (IFNγ, IL1β, IL6 and TNFα) stress and inflammatory infiltrate in chagasic myocardium. These benefits were delivered through SIRT1-dependent inhibition of NFκB transcriptional activity. We conclude that Tc inhibition of SIRT1/PGC1α activity was not a key mechanism in mitochondrial biogenesis defects during Chagas disease. SRT1720-dependent SIRT1 activation led to suppression of NFκB transcriptional activity, and subsequently, oxidative/nitrosative and inflammatory pathology were subdued, and antioxidant status and LV function were enhanced in chronic chagasic cardiomyopathy.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902010697230ZK.pdf 2950KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:13次