| Nutrition & Metabolism | |
| Mechanisms involved in cellular ceramide homeostasis | |
| Xian-Cheng Jiang1  Weijun Jin1  M Mahmood Hussain1  | |
| [1] Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA | |
| 关键词: Plasma membrane; Golgi; Endoplasmic reticulum; Lipoproteins; Gangliosides; Ceramides; Sphingomyelin; | |
| Others : 814576 DOI : 10.1186/1743-7075-9-71 |
|
| received in 2012-06-20, accepted in 2012-07-13, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Sphingolipids are ubiquitous and critical components of biological membranes. Their biosynthesis starts with soluble precursors in the endoplasmic reticulum and culminates in the Golgi complex and plasma membrane. Ceramides are important intermediates in the biosynthesis of sphingolipids, such as sphingomyelin, and their overload in the membranes is injurious to cells. The major product of ceramide metabolism is sphingomyelin. We observed that sphingomyelin synthase (SMS) 1 or SMS2 deficiencies significantly decreased plasma and liver sphingomyelin levels. However, SMS2 but not SMS1 deficiency increased plasma ceramides. Surprisingly, SMS1 deficiency significantly increased glucosylceramide and ganglioside GM3, but SMS2 deficiency did not. To explain these unexpected findings about modest to no significant changes in ceramides and increases in other sphingolipids after the ablation of SMS1, we hypothesize that cells have evolved several organelle specific mechanisms to maintain ceramide homeostasis. First, ceramides in the endoplasmic reticulum membranes are controlled by its export to Golgi by protein mediated transfer. Second, in the Golgi, ceramide levels are modulated by their enzymatic conversion to different sphingolipids such as sphingomyelin, and glucosylceramides. Additionally, these sphingolipids can become part of triglyceride-rich apolipoprotein B-containing lipoproteins and be secreted. Third, in the plasma membrane ceramide levels are maintained by ceramide/sphingomyelin cycle, delivery to lysosomes, and efflux to extracellular plasma acceptors. All these pathways might have evolved to ensure steady cellular ceramide levels.
【 授权许可】
2012 Hussain et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140710040854895.pdf | 581KB | ||
| Figure 2. | 52KB | Image | |
| Figure 1. | 67KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Gault CR, Obeid LM, Hannun YA: An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 2010, 688:1-23.
- [2]Sabourdy F, Kedjouar B, Sorli SC, Colie S, Milhas D, Salma Y, et al.: Functions of sphingolipid metabolism in mammals–lessons from genetic defects. Biochim Biophys Acta 2008, 1781:145-183.
- [3]Lucki NC, Sewer MB: Nuclear sphingolipid metabolism. Annu Rev Physiol 2012, 74:131-151.
- [4]Hannun YA, Obeid LM: Many ceramides. J Biol Chem 2011, 286:27855-27862.
- [5]Simons K, Ikonen E: Functional rafts in cell membranes. Nature 1997, 387:569-572.
- [6]Futerman AH, Hannun YA: The complex life of simple sphingolipids. EMBO Rep 2004, 5:777-782.
- [7]Holthuis JC, van Meer G, Huitema K: Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol Membr Biol 2003, 20:231-241.
- [8]Gulbins E, Li PL: Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol 2006, 290:R11-R26.
- [9]Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC, et al.: Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 2008, 14:382-391.
- [10]Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, et al.: Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 2007, 13:164-170.
- [11]Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA, et al.: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009, 58:337-343.
- [12]Drobnik W, Liebisch G, Audebert FX, Frohlich D, Gluck T, Vogel P, et al.: Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res 2003, 44:754-761.
- [13]Chatterjee S: Sphingolipids in atherosclerosis and vascular biology. Arterioscler Thromb Vasc Biol 1998, 18:1523-1533.
- [14]Gulbins E, Kolesnick R: Raft ceramide in molecular medicine. Oncogene. 2003, 22:7070-7077.
- [15]de Mello V, Lankinen M, Schwab U, Kolehmainen M, Lehto S, Seppanen-Laakso T, et al.: Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 2009, 52:2612-2615.
- [16]Ichi I, Takashima Y, Adachi N, Nakahara K, Kamikawa C, Harada-Shiba M, et al.: Effects of dietary cholesterol on tissue ceramides and oxidation products of apolipoprotein B-100 in ApoE-deficient mice. Lipids 2007, 42:893-900.
- [17]Bikman BT, Summers SA: Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 2011, 121:4222-4230.
- [18]Hannun YA: Functions of ceramide in coordinating cellular responses to stress. Science 1996, 274:1855-1859.
- [19]Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC: Identification of a family of animal sphingomyelin synthases. EMBO J 2004, 23:33-44.
- [20]Vacaru AM, Tafesse FG, Ternes P, Kondylis V, Hermansson M, Brouwers JF, et al.: Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J Cell Biol 2009, 185:1013-1027.
- [21]Hanada K: Intracellular trafficking of ceramide by ceramide transfer protein. Proc Jpn Acad Ser B Phys Biol Sci 2010, 86:426-437.
- [22]Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, et al.: Molecular machinery for non-vesicular trafficking of ceramide. Nature 2003, 426:803-809.
- [23]Hanada K, Kumagai K, Tomishige N, Yamaji T: CERT-mediated trafficking of ceramide. Biochim Biophys Acta 2009, 1791:684-691.
- [24]Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T: Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem 2004, 279:18688-18693.
- [25]Li Z, Fan Y, Liu J, Li Y, Quan C, Bui HH, et al.: Impact of Sphingomyelin Synthase 1 Deficiency on Sphingolipid Metabolism and Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2012, 32:1577-1584.
- [26]Liu J, Zhang H, Li Z, Hailemariam TK, Chakraborty M, Qiu D, et al.: Sphingomyelin Synthase 2 Is One of the Determinants for Plasma and Liver Sphingomyelin Levels in Mice. Arterioscler Thromb Vasc Biol 2009, 29:850-856.
- [27]Miyaji M, Jin ZX, Yamaoka S, Amakawa R, Fukuhara S, Sato SB, et al.: Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 2005, 202:249-259.
- [28]van der Luit AH, Budde M, Zerp S, Caan W, Klarenbeek JB, Verheij M, et al.: Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts. Biochem J 2007, 401:541-549.
- [29]Li Z, Hailemariam TK, Zhou H, Li Y, Duckworth DC, Peake DA, et al.: Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim Biophys Acta 2007, 1771:1186-1194.
- [30]Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM, Rembiesa B, et al.: Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res 2010, 51:3074-3087.
- [31]Hussain MM, Pan X: Clock genes, intestinal transport and plasma lipid homeostasis. Trends Endocrinol Metab 2009, 20:177-185.
- [32]Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A: Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim Biophys Acta 1996, 1300:151-170.
- [33]Jiang XC, Bruce C, Mar J, Lin M, Ji Y, Francone OL, et al.: Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J Clin Invest 1999, 103:907-914.
- [34]Hussain MM, Strickland DK, Bakillah A: The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 1999, 19:141-172.
- [35]Mansbach CM, Siddiqi SA: The biogenesis of chylomicrons. Annu Rev Physiol 2010, 72:315-333.
- [36]Tiwari S, Siddiqi SA: Intracellular Trafficking and Secretion of VLDL. Arterioscler Thromb Vasc Biol 2012, 32:1079-1086.
- [37]Memon RA, Holleran WM, Moser AH, Seki T, Uchida Y, Fuller J, et al.: Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscler Thromb Vasc Biol 1998, 18:1257-1265.
- [38]Memon RA, Holleran WM, Uchida Y, Moser AH, Ichikawa S, Hirabayashi Y, et al.: Regulation of glycosphingolipid metabolism in liver during the acute phase response. J Biol Chem 1999, 274:19707-19713.
- [39]Merrill AH Jr, Lingrell S, Wang E, Nikolova-Karakashian M, Vales TR, Vance DE: Sphingolipid biosynthesis de novo by rat hepatocytes in culture. Ceramide and sphingomyelin are associated with, but not required for, very low density lipoprotein secretion. J Biol Chem 1995, 270:13834-13841.
- [40]Hussain MM, Shi J, Dreizen P: Microsomal triglyceride transfer protein and its role in apolipoprotein B-lipoprotein assembly. J Lipid Res 2003, 44:22-32.
- [41]Hussain MM, Rava P, Walsh M, Rana M, Iqbal J: Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond) 2012, 9:14. BioMed Central Full Text
- [42]Jiang XC, Qin S, Qiao C, Kawano K, Lin M, Skold A, et al.: Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nat Med 2001, 7:847-852.
- [43]Jiang XC, Jin W, Hussain MM: Phospholipid transfer activity and apoB-containing lipoprotein metabolism. Nutr Metab (Lond) 2012, : . In press
- [44]Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, et al.: Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res 2006, 47:1791-1802.
PDF