Proteome Science | |
A comparative proteomic study identified LRPPRC and MCM7 as putative actors in imatinib mesylate cross-resistance in Lucena cell line | |
Eliana Abdelhay1  Daniela Pinto2  André Mencalha2  Bárbara Du Rocher2  Luciana Pizzatti2  Stephany Corrêa3  | |
[1] Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil;Laboratório Célula-Tronco, Divisão de Laboratórios do CEMO, Instituto Nacional de Câncer, Rio de Janeiro, Brazil;Instituto Nacional de Câncer, Praça da Cruz Vermelha, n° 23, 6° andar, ala C, CEMO, Laboratório Célula-Tronco, CEP: 20230130 Rio de Janeiro, RJ, Brazil | |
关键词: Mass spectrometry; Proteome; MCM7; LRPPRC; Chronic myeloid leukemia; Imatinib mesylate; | |
Others : 817382 DOI : 10.1186/1477-5956-10-23 |
|
received in 2011-10-23, accepted in 2012-03-30, 发布年份 2012 | |
【 摘 要 】
Background
Although chronic myeloid leukemia (CML) treatment has improved since the introduction of imatinib mesylate (IM), cases of resistance have been reported. This resistance has been associated with the emergence of multidrug resistance (MDR) phenotype, as a BCR-ABL independent mechanism. The classic pathway studied in MDR promotion is ATP-binding cassette (ABC) family transporters expression, but other mechanisms that drive drug resistance are largely unknown. To better understand IM therapy relapse due to the rise of MDR, we compared the proteomic profiles of K562 and Lucena (K562/VCR) cells.
Results
The use of 2-DE coupled with a MS approach resulted in the identification of 36 differentially expressed proteins. Differential mRNA levels of leucine-rich PPR motif-containing (LRPPRC) protein, minichromosome maintenance complexcomponent 7 (MCM7) and ATP-binding cassette sub-family B (MDR/TAP) member 1 (ABCB1) were capable of defining samples from CML patients as responsive or resistant to therapy.
Conclusions
Through the data presented in this work, we show the relevance of MDR to IM therapy. In addition, our proteomic approach identified candidate actors involved in resistance, which could lead to additional information on BCR-ABL-independent molecular mechanisms.
【 授权许可】
2012 Corrêa et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140711001221559.pdf | 4554KB | download | |
Figure 9. | 33KB | Image | download |
Figure 8. | 88KB | Image | download |
Figure 7. | 86KB | Image | download |
Figure 6. | 46KB | Image | download |
Figure 5. | 40KB | Image | download |
Figure 4. | 40KB | Image | download |
Figure 3. | 65KB | Image | download |
Figure 2. | 40KB | Image | download |
Figure 2. | 31KB | Image | download |
【 图 表 】
Figure 2.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C: Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007, 21:926-935.
- [2]Hochhaus A: Chronic myelogenous leukemia (CML): resistance to tyrosine kinase inhibitors. Ann Oncol 2006, 17:274-279.
- [3]Mughal TI, Goldman JM: Emerging strategies for the treatment of mutant Bcr-Abl T315I myeloid leukemia. Clin Lymphoma Myeloma 2007, 7:S81-S84.
- [4]Quintás-Cardama A, Kantarjian HM, Cortes JE: Mechanisms of Primary and Secondary Resistance to Imatinib in Chronic Myeloid Leukemia. Cancer Control 2009, 16:122-131.
- [5]Walz C, Sattler M: Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia. Crit Rev Oncol Hematol 2006, 57:145-164.
- [6]Swords R, Alvarado Y, Giles F: Novel Abl kinase inhibitors in chronic myeloid leukemia in blastic phase and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Lymphoma Myeloma 2007, 7:S113-S119.
- [7]Azzariti A, Porcelli L, Simone GM, Quatrale AE, Colabufo NA, Berardi F, Perrone R, Zucchetti M, D'Incalci M, Xu JM, Paradiso A: Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol 2009, 65:335-346.
- [8]Mahon F, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F, Belanger C, Manley P, Leroy C, Etienne G, Roche S, Pasquet J: Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res 2008, 68:9809-9816.
- [9]Dohse M, Scharenberg C, Shukla S, Robey RW, Volkmann T, Deeken JF, Brendel C, Ambudkar SV, Neubauer A, Bates SE: Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos 2010, 38:1371-1380.
- [10]Lage H: An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 2008, 65:3145-3167.
- [11]Stavrovskaya AA, Stromskaya TP: Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc) 2008, 73:592-604.
- [12]Cristea IM, Gaskell SJ, Whetton AD: Proteomics techniques and their application to hematology. Blood 2004, 103:3624-3634.
- [13]Cho WC: Contribution of oncoproteomics to cancer biomarker discovery. Molecular Cancer 2007, 2:6-25.
- [14]Pizzatti L, Sá LA, De Souza JM, Bisch PM, Abdelhay E: Altered protein profile in chronic myeloid leukemia chronic phase identified by a comparative proteomic study. Biochim Biophys Acta 2006, 1764:929-942.
- [15]Chuthapisith S, Layfield R, Kerr ID, Hughes C, Eremin O: Proteomic profiling of MCF-7 breast cancer cells with chemoresistance to different types of anti-cancer drugs. Int J Oncol 2007, 30:1545-1551.
- [16]Zeindl-Eberhart E, Haraida S, Liebmann S, Jungblut PR, Lamer S, Mayer D, Jäger G, Chung S, Rabes HM: Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas. Hepatology 2004, 39:540-549.
- [17]An HJ, Kim DS, Park YK, Kim SK, Choi YP, Kang S, Ding B, Cho NH: Comparative proteomics of ovarian epithelial tumors. J Proteome Res 2006, 5:1082-1090.
- [18]Yang YX, Hu HD, Zhang DZ, Ren H: Identification of Proteins Responsible for the Development of Adriamycin Resistance in Human Gastric Cancer Cells Using Comparative Proteomics Analysis. J Biochem Mol Biol 2007, 40:853-860.
- [19]Rumjanek VM, Trindade GS, Wagner-Souza K: de-Oliveira MC, Marques-Santos LF, Maia RC, Capella MA: Multidrug resistance in tumour cells: characterization of the multidrug resistant cell line K562-Lucena 1. An Acad Bras Cienc 2001, 73:57-69.
- [20]Assef Y, Rubio F, Coló G, del Mónaco S, Costas MA, Kotsias BA: Imatinib resistance in multidrug-resistant K562 human leukemic cells. Leuk Res 2009, 33:710-716.
- [21]Wang X, Lu Y, Yang J, Shi Y, Lan M, Liu Z, Zhai H, Fan D: Identification of triosephosphate isomerase as an anti-drug resistance agent in human gastric cancer cells using functional proteomic analysis. J Cancer Res Clin Oncol 2008, 134:995-1003.
- [22]Roychowdhury S, Talpaz M: Managing resistance in chronic myeloid leukemia. Blood Reviews 2011, 25:279-290.
- [23]Brózik A, Hegedüs C, Erdei Z, Hegedüs T, Özvegy-Laczka C, Szakács G, Sarkadi B: Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin Drug Metab Toxicol 2011, 7:623-642.
- [24]Baran Y, Ural AU, Gunduz U: Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 2007, 12:497-503.
- [25]Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM: Alterations of Ceramide/Sphingosine 1-Phosphate Rheostat Involved in the Regulation of Resistance to Imatinib-induced Apoptosis in K562 Human Chronic Myeloid Leukemia Cells. J Biol Chem 2007, 282(15):10922-10934.
- [26]Salas A, Ponnusamy S, Senkal CE, Meyers-Needham M, Selvam SP, Saddoughi SA, Apohan E, Sentelle RD, Smith C, Gault CR, Obeid LM, El-Shewy HM, Oaks J, Santhanam R, Marcucci G, Baran Y, Mahajan S, Fernandes D, Stuart R, Perrotti D, Ogretmen B: Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood 2011, 117(22):5941-5952.
- [27]Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA: Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther 2008, 7:3169-3175.
- [28]Kosova B, Tezcanli B, Ekiz HA, Cakir Z, Selvi N, Dalmizrak A, Kartal M, Gunduz U, Baran Y: Suppression of STAT5A increases chemotherapeutic sensitivity in imatinib-resistant and imatinib-sensitive K562 cells. Leuk Lymphoma 2010, 51:1895-1901.
- [29]Nambu T, Araki N, Nakagawa A, Kuniyasu A, Kawaguchi T, Hamada A, Saito H: Contribution of BCR-ABL-independent activation of ERK1/2 to acquired imatinib resistance in K562 chronic myeloid leukemia cells. Cancer Sci 2010, 10:137-142.
- [30]Mencalha AL, Du Rocher B, Sales D, Binato R, Abdelhay E: LLL-3, a STAT3 inhibitor, represses BCR-ABL-positive cell proliferation, activates apoptosis and improves the effects of Imatinib mesylate. Cancer Chemother Pharmacol 2010, 65:1039-1046.
- [31]Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL: Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002, 99:319-325.
- [32]Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, Arber DA, Slovak ML, Forman SJ: Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients incomplete cytogenetic remission following imatinib mesylate treatment. Blood 2003, 101:4701-4707.
- [33]Angstreich GR, Matsui W, Huff CA, Vala MS, Barber J, Hawkins AL, Griffin CA, Smith BD, Jones RJ: Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. Br J Haematol 2005, 130:373-381.
- [34]Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, Barow M, Mountford JC, Holyoake TL: Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006, 107:4532-4539.
- [35]Nicholson E, Holyoake T: The chronic myeloid leukemia stem cell. Clin Lymphoma Myeloma 2009, 9:S376-S381.
- [36]Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, Nicolini FE, Müller-Tidow C, Bhatia R, Brunton VG, Koschmieder S, Holyoake TL: Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2011. doi: 10.1182/blood-2010-12-326843
- [37]Mukai M, Che XF, Furukawa T, Sumizawa T, Aoki S, Ren XQ, Haraguchi M, Sugimoto Y, Kobayashi M, Takamatsu H, Akiyama S: Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells. Cancer Sci 2003, 94:557-563.
- [38]Illmer T, Schaich M, Platzbecker U, Freiberg-Richter J, Oelschlägel U, von Bonin M, Pursche S, Bergemann T, Ehninger G, Schleyer E: P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 2004, 18:401-408.
- [39]Yamada O, Ozaki K, Furukawa T, Machida M, Wang Y, Motoji T, Mitsuishi T, Akiyama M, Yamada H: Activation of STAT5 confers imatinib resistance on leukemic cells through the transcription of TER and MDR. Cell Signal 2011, 23:1119-1127.
- [40]Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA: Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood 2011, 117:e75-87.
- [41]Vasconcelos F, Silva K, Souza P, Silva L, Moellmann-Coelho A, Klumb C, Maia R: Variation of MDR Proteins Expression and Activity Levels According to Clinical Status and Evolution of CML Patients. Cytometry B Clin Cytom 2011, 80:158-166.
- [42]Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT, Wong PK, Zhang DD: Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 2008, 29:1235-1243.
- [43]Ma Q: Xenobiotic-activated receptors: from transcription to drug metabolism to disease. Chem Res Toxicol 2008, 21:1651-1671.
- [44]Hayashibara T, Yamada Y, Mori N, Harasawa H, Sugahara K, Miyanishi T, Kamihira S, Tomonaga M: Possible involvement of aryl hydrocarbon receptor (AhR) in adult T-cell leukemia (ATL) leukemogenesis: constitutive activation of AhR in ATL. Biochem Biophys Res Commun 2003, 300:128-134.
- [45]Kizu R, Okamura K, Toriba A, Kakishima H, Mizokami A, Burnstein KL, Hayakawa K: A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch Toxicol 2003, 77:335-343.
- [46]Giudice A: C. Arra C, M.C. Turco MC: Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol Biol 2010, 647:37-74.
- [47]Tarumoto T, Nagai T, Ohmine K, Miyoshi T, Nakamura M, Kondo T, Mitsugi K, Nakano S, Muroi K, Komatsu N, Ozawa K: Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Exp Hematol 2004, 32:375-381.
- [48]Colavita I, Esposito N, Martinelli R, Catanzano F, Melo JV, Pane F, Ruoppolo M, Salvatore F: Gaining insights into the Bcr-Abl activity-independent mechanisms of resistance to imatinib mesylate in KCL22 cells: A comparative proteomic approach. Biochim Biophys Acta 2010, 1804:1974-1987.
- [49]Nagai T, Kikuchi S, Ohmine K, Miyoshi T, Nakamura M, Kondo T, Furuyama K, Komatsu N, Ozawa K: Hemin reduces cellular sensitivity to imatinib and anthracyclins via Nrf2. J Cell Biochem 2008, 104:680-691.
- [50]Bonovolias ID, Tsiftsoglou AS: Hemin counteracts the repression of Bcl-2 and NrF2 genes and the cell killing induced by imatinib in human Bcr-Abl(+) CML cells. Oncol Res 2009, 17:535-547.
- [51]Hou J, Wang F, McKeehan WL: Molecular cloning and expression of the gene for a major leucine-rich protein from human hepatoblastoma cells (HepG2). In Vitro Cell Dev Biol Anim 1994, 30:111-114.
- [52]Liu L, McKeehan WL: Sequence analysis of LRPPRC and its SEC1 domain interaction partners suggests roles in cytoskeletal organization, vesicular trafficking, nucleocytosolic shuttling, and chromosome activity. Genomics 2002, 79:124-136.
- [53]Liu L, Amy V, Liu G, McKeehan WL: Novel complex integrating mitochondria and the microtubular cytoskeleton with chromosome remodeling and tumor suppressor RASSF1 deduced by in silico homology analysis, interaction cloning in yeast, and colocalization in cultured cells. In Vitro Cell Dev Biol Anim 2002, 38:582-594.
- [54]Labialle S, Dayan G, Gayet L, Rigal D, Gambrelle J, Baggetto LG: New invMED1 element cis-activates human multidrug-related MDR1 and MVP genes, involving the LRP130 protein. Nucleic Acids Res 2004, 32:3864-3876.
- [55]Michaud M, Barakat S, Magnard S, Rigal D, Baggetto LG: Leucine-rich protein 130contributes to apoptosis resistance in human hepatocarcinoma cells. Intern Journal of Oncol 2011, 38:169-178.
- [56]Takisawa H, Mimura S, Kubota Y: Eukaryotic DNA replication: from pre-replication complex to initiation complex. Curr Opin Cell Biol 2000, 12:690-696.
- [57]Shohet JM, Hicks MJ, Plon SE, Burlingame SM, Stuart S, Chen SY, Brenner MK, Nuchtern JG: Minichromosome maintenance protein MCM7 is a direct target of the MYCN transcription factor in neuroblastoma. Cancer Res 2002, 62:1123-1128.
- [58]Blanc E, Goldschneider D, Ferrandis E, Barrois M, Le Roux G, Leonce S, Douc-Rasy S, Bénard J, Raguénez G: MYCN enhances P-gp/MDR1 gene expression in the human metastatic neuroblastoma IGR-N-91 model. Am J Pathol 2003, 163:321-331.
- [59]Pajic M, Norris MD, Cohn SL, Haber M: The role of the multidrug resistance-associated protein 1 gene in neuroblastoma biology and clinical outcome. Cancer Lett 2005, 228:241-246.
- [60]Tsao CC, Geisen C, Abraham RT: Interaction between human MCM7 and Rad17 proteins is required for replication checkpoint signaling. EMBO J 2004, 23:4660-4669.
- [61]Cortez D, Glick G: Elledge SJ: Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci USA 2004, 101:10078-10083.
- [62]Chou DM, Elledge SJ: Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc Natl Acad Sci USA 2006, 103:18143-18147.
- [63]Mahon FX, Deininger M, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV: Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the signal transduction inhibitor STI571: diverse mechanisms of resistance. Blood 2000, 96:1070-1079.
- [64]Reis FR, Vasconcelos FC, Pereira DL, Moellman-Coelho A, Silva KL, Maia RC: Survivin and P-glycoprotein are associated and highly expressed in late phase chronic myeloid leukemia. Oncol Rep 2011, 26:471-478.
- [65]Ferrao PT, Frost MJ, Siah SP, Ashman LK: Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro. Blood 2003, 102:4499-4503.
- [66]Dai H, Marbach P, Lemaire M, Hayes M, Elmquist WF: Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003, 304:1085-1092.
- [67]Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, Goldman JM, Melo JV: MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003, 101:2368-2373.
- [68]Thomas J, Wang L, Clark RE, Pirmohamed M: Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004, 104:3739-3745.
- [69]Galimberti S, Cervetti G, Guerrini F, Testi R, Pacini S, Fazzi R, Simi P, Petrini M: Quantitative molecular monitoring of BCR-ABL and MDR1 transcripts in patients with chronic myeloid leukemia during Imatinib treatment. Cancer Genet Cytogenet 2005, 162:57-62.
- [70]Ni LN, Li JY, Miao KR, Qiao C, Zhang SJ, Qiu HR, Qian SX: Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med Oncol 2011, 28:265-269.
- [71]Yamakawa Y, Hamada A, Nakashima R, Yuki M, Hirayama C, Kawaguchi T, Saito H: Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit 2011, 33:244-250.
- [72]Deenik W, van der Holt B, Janssen JJWM, Chu IWT, Valk PJM, Ossenkoppele GJ, van der Heiden IP: P. Sonneveid P, van Schaik RHN, Cornelissen JJ: Polymorphisms in the multidrug resistance gene MDR1 (ABCB1) predict for molecular resistance in patients with newly diagnosed chronic myeloid leukemia receiving high-dose imatinib. Blood 2010, 116:6144-6145.
- [73]Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001, 7:1028-1034.
- [74]Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC: Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006, 108:1370-1373.
- [75]Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C: Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007, 21:926-935.
- [76]Hatziieremia S, Jordanides NE, Holyoake TL, Mountford JC, Jørgensen HG: Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib. Exp Hematol 2009, 37:692-700.
- [77]Zong Y, Zhou S, Sorrentino BP: Loss of P-glycoprotein expression in hematopoietic stem cells does not improve responses to imatinib in a murine model of chronic myelogenous leukemia. Leukemia 2005, 19:1590-1596.
- [78]Leth-Larsen R, Lund RR, Ditzel HJ: Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 2010, 9:1369-1382.
- [79]Rocha GG, Simões M, Oliveira RR, Kaplan MAC, Gattass CR: 3β-acetyl tormentic acid induces apoptosis of resistant leukemia cells independently of P-gp/ABCB1 activity or expression. Invest New Drugs 2012, 30:105-113.
- [80]Nicoletti I, Migliorati G, Pagliaccil MC, Grignani F, Riccardi C: A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991, 139:271-279.
- [81]Neyfakh AA: Use of fluorescent dyes as molecular probes for the study of multidrug resistance. Exp Cell Res 1988, 174:168-176.
- [82]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
- [83]Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG: Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25:1327-1333.
- [84]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 2001, 25:402-408.