期刊论文详细信息
Molecular Neurodegeneration
Alzheimer-specific variants in the 3'UTR of Amyloid precursor protein affect microRNA function
Sébastien S Hébert2  Paul Mathews1  Frédéric Calon3  Charlotte Delay2 
[1] NYU School of Medicine, Nathan Kline Institute, Orangeburg (NY), USA;Université Laval, Faculté de médecine, Département de psychiatrie et de neurosciences, Québec (Qc), Canada;Université Laval, Faculté de pharmacie, Québec (Qc), Canada
关键词: miR-147, miR-20a;    Alzheimer's disease;    microRNA, single nucleotide polymorphism;    Amyloid precursor protein;   
Others  :  865570
DOI  :  10.1186/1750-1326-6-70
 received in 2011-05-09, accepted in 2011-10-07,  发布年份 2011
PDF
【 摘 要 】

Background

APP expression misregulation can cause genetic Alzheimer's disease (AD). Recent evidences support the hypothesis that polymorphisms located in microRNA (miRNA) target sites could influence the risk of developing neurodegenerative disorders such as Parkinson's disease (PD) and frontotemporal dementia. Recently, a number of single nucleotide polymorphisms (SNPs) located in the 3'UTR of APP have been found in AD patients with family history of dementia. Because miRNAs have previously been implicated in APP expression regulation, we set out to determine whether these polymorphisms could affect miRNA function and therefore APP levels.

Results

Bioinformatics analysis identified twelve putative miRNA bindings sites located in or near the APP 3'UTR variants T117C, A454G and A833C. Among those candidates, seven miRNAs, including miR-20a, miR-17, miR-147, miR-655, miR-323-3p, miR-644, and miR-153 could regulate APP expression in vitro and under physiological conditions in cells. Using luciferase-based assays, we could show that the T117C variant inhibited miR-147 binding, whereas the A454G variant increased miR-20a binding, consequently having opposite effects on APP expression.

Conclusions

Taken together, our results provide proof-of-principle that APP 3'UTR polymorphisms could affect AD risk through modulation of APP expression regulation, and set the stage for further association studies in genetic and sporadic AD.

【 授权许可】

   
2011 Delay et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726082608134.pdf 1617KB PDF download
53KB Image download
57KB Image download
【 图 表 】

【 参考文献 】
  • [1]De Strooper B: Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiological reviews 2010, 90:465-94.
  • [2]Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L: High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. The Journal of neuroscience: the official journal of the Society for Neuroscience 2000, 20:4050-8.
  • [3]D'Hooge R, Nagels G, Westland CE, Mucke L, De Deyn PP: Spatial learning deficit in mice expressing human 751-amino acid beta-amyloid precursor protein. Neuroreport 1996, 7:2807-11.
  • [4]Theuns J, Brouwers N, Engelborghs S, Sleegers K, Bogaerts V, Corsmit E, De Pooter T, van Duijn CM, De Deyn PP, Van Broeckhoven C: Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. American journal of human genetics 2006, 78:936-46.
  • [5]Podlisny MB, Lee G, Selkoe DJ: Gene dosage of the amyloid beta precursor protein in Alzheimer's disease. Science (New York, N.Y.) 1987, 238:669-71.
  • [6]Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerrière A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D: APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature genetics 2006, 38:24-6.
  • [7]Hébert SS, De Strooper B: Alterations of the microRNA network cause neurodegenerative disease. Trends in neurosciences 2009, 32:199-206.
  • [8]Ambros V: The functions of animal microRNAs. Nature 2004, 431:350-5.
  • [9]Djuranovic S, Nahvi A, Green R: A Parsimonious Model for Gene Regulation by miRNAs. Science 2011, 331:550-553.
  • [10]Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B: MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiology of disease 2009, 33:422-8.
  • [11]Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T, Liu M, Li X, Tang H: miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta biochimica et biophysica Sinica 2010, 42:318-24.
  • [12]Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC, Saunders AJ: MicroRNAs can regulate human APP levels. Molecular neurodegeneration 2008, 3:10. BioMed Central Full Text
  • [13]Vilardo E, Barbato C, Ciotti MT, Cogoni C, Ruberti F: MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. The Journal of biological chemistry 2010, 285:18344-18351.
  • [14]Long JM, Lahiri DK: MicroRNA-101 downregulates Alzheimer's amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochemical and biophysical research communications 2010.
  • [15]Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J, Peng X: MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer's-associated pathogenesis in SAMP8 mice. Neurobiology of aging 2010.
  • [16]Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B: Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America 2008, 105:6415-20.
  • [17]Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ: Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PloS one 2010, 5:e8898.
  • [18]Wang G, van Der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, Martin ER, Vance JM: Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. American journal of human genetics 2008, 82:283-9.
  • [19]Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, Finch N, Rutherford NJ, Crook RJ, Josephs KA, Boeve BF, Knopman DS, Petersen RC, Parisi JE, Caselli RJ, Wszolek ZK, Uitti RJ, Feldman H, Hutton ML, Mackenzie IR, Graff-Radford NR, Dickson DW: Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Human molecular genetics 2008, 17:3631-42.
  • [20]Bettens K, Brouwers N, Engelborghs S, Van Miegroet H, De Deyn PP, Theuns J, Sleegers K, Van Broeckhoven C: APP and BACE1 miRNA genetic variability has no major role in risk for Alzheimer disease. Human mutation 2009, 30:1207-13.
  • [21]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic acids research 2008, 36:D154-8.
  • [22]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
  • [23]Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome biology 2003, 5:R1. BioMed Central Full Text
  • [24]Bimonte H a, Granholm A-CE, Seo H, Isacson O: Spatial memory testing decreases hippocampal amyloid precursor protein in young, but not aged, female rats. Neuroscience letters 2002, 328:50-4.
  • [25]Nishimura I: Upregulation and antiapoptotic role of endogenous Alzheimer amyloid precursor protein in dorsal root ganglion neurons. Experimental Cell Research 2003, 286:241-251.
  文献评价指标  
  下载次数:0次 浏览次数:6次