Molecular Neurodegeneration | |
WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity | |
Karen L O'Malley1  Jo Ann V Antenor-Dorsey1  | |
[1] Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA | |
关键词: axonal degeneration; dopaminergic neurons; MPP+; Parkinson's disease; Nmnat1; WldS; | |
Others : 863940 DOI : 10.1186/1750-1326-7-5 |
|
received in 2011-08-10, accepted in 2012-02-08, 发布年份 2012 | |
【 摘 要 】
Background
The WldS mouse mutant ("Wallerian degeneration-slow") delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury.
Results
Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate that WldS but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+). Moreover, NAD+ synthesis is not required since enzymatically-inactive WldS still protects. In addition, NAD+ by itself is axonally protective and together with WldS is additive in the MPP+ model.
Conclusions
Our data suggest that NAD+ and WldS act through separate and possibly parallel mechanisms to protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that WldS might be involved in preserving mitochondrial health or maintaining cellular metabolism.
【 授权许可】
2012 Antenor-Dorsey and O'Malley; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
acp-9-771-2009.pdf | 1793KB | download | |
66KB | Image | download | |
66KB | Image | download | |
72KB | Image | download | |
83KB | Image | download | |
102KB | Image | download | |
92KB | Image | download | |
117KB | Image | download | |
109KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Dauer W, Przedborski S: Parkinson's disease: mechanisms and models. Neuron 2003, 39:889-909.
- [2]Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM: Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 2001, 65:135-172.
- [3]Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K: Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res 2004, 318:121-134.
- [4]Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F: Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973, 20:415-455.
- [5]Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y: Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann Neurol 1989, 26:551-557.
- [6]Riederer P, Wuketich S: Time course of nigrostriatal degeneration in parkinson's disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 1976, 38:277-301.
- [7]Cheng HC, Ulane CM, Burke RE: Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 2010, 67:715-725.
- [8]Fearnley JM, Lees AJ: Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991, 114(Pt 5):2283-2301.
- [9]Kramer ML, Schulz-Schaeffer WJ: Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 2007, 27:1405-1410.
- [10]Saha AR, Hill J, Utton MA, Asuni AA, Ackerley S, Grierson AJ, Miller CC, Davies AM, Buchman VL, Anderton BH, Hanger DP: Parkinson's disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci 2004, 117:1017-1024.
- [11]Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, Zhou C, Geghman K, Bogdanov M, Przedborski S, Beal MF, Burke RE, Li C: Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci 2009, 12:826-828.
- [12]Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605-608.
- [13]Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ: Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 2009, 48:2045-2052.
- [14]Mortiboys H, Thomas KJ, Koopman WJ, Klaffke S, Abou-Sleiman P, Olpin S, Wood NW, Willems PH, Smeitink JA, Cookson MR, Bandmann O: Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 2008, 64:555-565.
- [15]Ren Y, Liu W, Jiang H, Jiang Q, Feng J: Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 2005, 280:34105-34112.
- [16]Cappelletti G, Pedrotti B, Maggioni MG, Maci R: Microtubule assembly is directly affected by MPP(+)in vitro. Cell Biol Int 2001, 25:981-984.
- [17]Cartelli D, Ronchi C, Maggioni MG, Rodighiero S, Giavini E, Cappelletti G: Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP+ -induced neurodegeneration. J Neurochem 2010, 115:247-258.
- [18]Morfini G, Pigino G, Opalach K, Serulle Y, Moreira JE, Sugimori M, Llinas RR, Brady ST: 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc Natl Acad Sci USA 2007, 104:2442-2447.
- [19]Kim-Han JS, Antenor-Dorsey JA, O'Malley KL: The Parkinsonian Mimetic, MPP+, Specifically Impairs Mitochondrial Transport in Dopamine Axons. J Neurosci 2011, 31:7212-7221.
- [20]Coleman MP, Freeman MR: Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 2010, 33:245-267.
- [21]Mi W, Beirowski B, Gillingwater TH, Adalbert R, Wagner D, Grumme D, Osaka H, Conforti L, Arnhold S, Addicks K, Wada K, Ribchester RR, Coleman MP: The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. Brain 2005, 128:405-416.
- [22]Sajadi A, Schneider BL, Aebischer P: Wlds-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr Biol 2004, 14:326-330.
- [23]Hasbani DM, O'Malley KL: Wld(S) mice are protected against the Parkinsonian mimetic MPTP. Exp Neurol 2006, 202:93-99.
- [24]Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando FS, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP: Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 2001, 4:1199-1206.
- [25]Coleman MP, Conforti L, Buckmaster EA, Tarlton A, Ewing RM, Brown MC, Lyon MF, Perry VH: An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc Natl Acad Sci USA 1998, 95:9985-9990.
- [26]Conforti L, Wilbrey A, Morreale G, Janeckova L, Beirowski B, Adalbert R, Mazzola F, Di Stefano M, Hartley R, Babetto E, Smith T, Gilley J, Billington RA, Genazzani AA, Ribchester RR, Magni G, Coleman M: Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. J Cell Biol 2009, 184:491-500.
- [27]Araki T, Sasaki Y, Milbrandt J: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004, 305:1010-1013.
- [28]Sasaki Y, Araki T, Milbrandt J: Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci 2006, 26:8484-8491.
- [29]Avery MA, Sheehan AE, Kerr KS, Wang J, Freeman MR: WldS requires Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J Cell Biol 2009, 184:501-513.
- [30]Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ: NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature 2008, 452:887-891.
- [31]Wen Y, Parrish JZ, He R, Zhai RG, Kim MD: Nmnat exerts neuroprotective effects in dendrites and axons. Mol Cell Neurosci 2011.
- [32]Zhai RG, Cao Y, Hiesinger PR, Zhou Y, Mehta SQ, Schulze KL, Verstreken P, Bellen HJ: Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. PLoS Biol 2006, 4:e416.
- [33]Lotharius J, Dugan LL, O'Malley KL: Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 1999, 19:1284-1293.
- [34]Babetto E, Beirowski B, Janeckova L, Brown R, Gilley J, Thomson D, Ribchester RR, Coleman MP: Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J Neurosci 2010, 30:13291-13304.
- [35]Sasaki Y, Milbrandt J: Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons. J Biol Chem 2010, 285:41211-41215.
- [36]Press C, Milbrandt J: Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J Neurosci 2008, 28:4861-4871.
- [37]Verghese PB, Sasaki Y, Yang D, Stewart F, Sabar F, Finn MB, Wroge CM, Mennerick S, Neil JJ, Milbrandt J, Holtzman DM: Nicotinamide mononucleotide adenylyl transferase 1 protects against acute neurodegeneration in developing CNS by inhibiting excitotoxic-necrotic cell death. Proc Natl Acad Sci USA 2011, 108:19054-19059.
- [38]Sasaki Y, Vohra BP, Lund FE, Milbrandt J: Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J Neurosci 2009, 29:5525-5535.
- [39]Sasaki Y, Vohra BP, Baloh RH, Milbrandt J: Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J Neurosci 2009, 29:6526-6534.
- [40]Wishart TM, Pemberton HN, James SR, McCabe CJ, Gillingwater TH: Modified cell cycle status in a mouse model of altered neuronal vulnerability (slow Wallerian degeneration; Wlds). Genome Biol 2008, 9:R101. BioMed Central Full Text
- [41]Yan T, Feng Y, Zheng J, Ge X, Zhang Y, Wu D, Zhao J, Zhai Q: Nmnat2 delays axon degeneration in superior cervical ganglia dependent on its NAD synthesis activity. Neurochem Int 2010, 56:101-106.
- [42]Conforti L, Fang G, Beirowski B, Wang MS, Sorci L, Asress S, Adalbert R, Silva A, Bridge K, Huang XP, Magni G, Glass JD, Coleman MP: NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration. Cell Death Differ 2007, 14:116-127.
- [43]Yahata N, Yuasa S, Araki T: Nicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration. J Neurosci 2009, 29:6276-6284.
- [44]Kaneko S, Wang J, Kaneko M, Yiu G, Hurrell JM, Chitnis T, Khoury SJ, He Z: Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J Neurosci 2006, 26:9794-9804.
- [45]Yang J, Klaidman LK, Chang ML, Kem S, Sugawara T, Chan P, Adams JD: Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacol Biochem Behav 2002, 73:901-910.
- [46]Sakakibara Y, Mitha AP, Ayoub IA, Ogilvy CS, Maynard KI: Delayed treatment with nicotinamide (vitamin B3) reduces the infarct volume following focal cerebral ischemia in spontaneously hypertensive rats, diabetic and non-diabetic Fischer 344 rats. Brain Res 2002, 931:68-73.
- [47]Demarin V, Podobnik SS, Storga-Tomic D, Kay G: Treatment of Alzheimer's disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 2004, 30:27-33.
- [48]Birkmayer JG, Vrecko C, Volc D, Birkmayer W: Nicotinamide adenine dinucleotide (NADH)--a new therapeutic approach to Parkinson's disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl 1993, 146:32-35.
- [49]Birkmayer JG: Coenzyme nicotinamide adenine dinucleotide: new therapeutic approach for improving dementia of the Alzheimer type. Ann Clin Lab Sci 1996, 26:1-9.
- [50]Kuhn W, Muller T, Winkel R, Danielczik S, Gerstner A, Hacker R, Mattern C, Przuntek H: Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis. J Neural Transm 1996, 103:1187-1193.
- [51]Zhai RG, Rizzi M, Garavaglia S: Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cell Mol Life Sci 2009, 66:2805-2818.
- [52]Ali YO, McCormack R, Darr A, Zhai RG: Nicotinamide Mononucleotide Adenylyltransferase Is a Stress Response Protein Regulated by the Heat Shock Factor/Hypoxia-inducible Factor 1α Pathway. J Biol Chem 2011, 286:19089-19099.
- [53]Nicklas WJ, Vyas I, Heikkila RE: Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 1985, 36:2503-2508.
- [54]Ramsay RR, Krueger MJ, Youngster SK, Gluck MR, Casida JE, Singer TP: Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J Neurochem 1991, 56:1184-1190.
- [55]Ramsay RR, Salach JI, Singer TP: Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Biochem Biophys Res Commun 1986, 134:743-748.
- [56]Lotharius J, O'Malley KL: The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 2000, 275:38581-38588.
- [57]Chang GD, Ramirez VD: The mechanism of action of MPTP and MPP+ on endogenous dopamine release from the rat corpus striatum superfused in vitro. Brain Res 1986, 368:134-140.
- [58]Cappelletti G, Surrey T, Maci R: The parkinsonism producing neurotoxin MPP+ affects microtubule dynamics by acting as a destabilising factor. FEBS Lett 2005, 579:4781-4786.
- [59]Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT: Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 2007, 170:75-86.
- [60]Barrientos SA, Martinez NW, Yoo S, Jara JS, Zamorano S, Hetz C, Twiss JL, Alvarez J, Court FA: Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 2011, 31:966-978.
- [61]Wishart TM, Paterson JM, Short DM, Meredith S, Robertson KA, Sutherland C, Cousin MA, Dutia MB, Gillingwater TH: Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene. Mol Cell Proteomics 2007, 6:1318-1330.
- [62]Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A: A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 2009, 12:387-389.
- [63]Surjana D, Halliday GM, Damian DL: Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J Nucleic Acids 2010 2010.
- [64]Hisahara S, Chiba S, Matsumoto H, Horio Y: Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2α). J Pharmacol Sci 2005, 98:200-204.
- [65]Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, He Z: A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 2005, 170:349-355.
- [66]Gillingwater TH, Haley JE, Ribchester RR, Horsburgh K: Neuroprotection after transient global cerebral ischemia in Wld(s) mutant mice. J Cereb Blood Flow Metab 2004, 24:62-66.
- [67]Ferri A, Sanes JR, Coleman MP, Cunningham JM, Kato AC: Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr Biol 2003, 13:669-673.
- [68]Liang CL, Wang TT, Luby-Phelps K, German DC: Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson's disease. Exp Neurol 2007, 203:370-380.
- [69]Hastings TG: The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson's disease. J Bioenerg Biomembr 2009, 41:469-472.
- [70]Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA: What causes the death of dopaminergic neurons in Parkinson's disease? Prog Brain Res 2010, 183:59-77.
- [71]Dickson DW, Fujishiro H, Orr C, DelleDonne A, Josephs KA, Frigerio R, Burnett M, Parisi JE, Klos KJ, Ahlskog JE: Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 2009, 15(Suppl 3):S1-5.
- [72]Bernstein AI, Garrison SP, Zambetti GP, O'Malley KL: 6-OHDA generated ROS induces DNA damage and p53- and PUMA-dependent cell death. Mol Neurodegener 2011, 6:2. BioMed Central Full Text
- [73]Beirowski B, Babetto E, Gilley J, Mazzola F, Conforti L, Janeckova L, Magni G, Ribchester RR, Coleman MP: Non-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo. J Neurosci 2009, 29:653-668.
- [74]Brown JA, Wysolmerski RB, Bridgman PC: Dorsal root ganglion neurons react to semaphorin 3A application through a biphasic response that requires multiple myosin II isoforms. Mol Biol Cell 2009, 20:1167-1179.
- [75]Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S: Enzymology of NAD+ homeostasis in man. Cell Mol Life Sci 2004, 61:19-34.