期刊论文详细信息
Particle and Fibre Toxicology
Resistance to visceral leishmaniasis is severely compromised in mice deficient of bradykinin B2-receptors
Clarisa Beatriz Palatnik-de-Sousa3  Marcos Palatnik1  Julio Scharfstein2  Alexandre Morrot3  Naiara Maran3  Daniel Ferreira Feijó3  Dirlei Nico3 
[1] Hospital Universitário Clementino Fraga Filho-Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, CEP 21941-913, Brazil;Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21949-900, Brazil;Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro (UFRJ), Avda. Carlos Chagas 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Caixa Postal 68040, 21941-902, Brazil
关键词: Resistance;    Susceptibility;    Leishmania (L.) chagasi;    Leishmania (L.) donovani;    Visceral leishmaniasis;    B2 kinin receptor;   
Others  :  1228840
DOI  :  10.1186/1756-3305-5-261
 received in 2012-06-29, accepted in 2012-11-03,  发布年份 2012
PDF
【 摘 要 】

Background

Kinins liberated from plasma–borne kininogens, are potent innate stimulatory signals. We evaluated whether resistance to infection by Leishmania (L.) chagasi depends on activation of G-protein coupled bradykinin B2 receptors (B2R).

Findings

B2R −/− C57BL/6 knock-out (KOB2) and B2R+/+ C57BL/6-wild type control mice (C57) were infected with amastigotes of Leishmania (L.) chagasi. Thirty days after infection, the KOB2 mice showed 14% and 32% relative increases of liver (p< 0.017) and spleen weights (p<0.050), respectively, whereas liver parasite load increased 65% (p< 0.011) in relation to wild type mice. The relative weight increases of liver and spleen and the parasite load were positively correlated (R = 0.6911; p< 0.007 to R = 0.7629; p< 0.001, respectively). Conversely, we found a negative correlation between the increased liver relative weight and the weakened DTH response (a strong correlate to protection or natural resistance to VL) or the decreased levels of IgG2b antibodies to leishmanial antigen. Finally, we also found that IFN-γ secretion by splenocytes, an adaptive response that was significantly decreased in KOB2 mice (p< 0.002), was (i) negatively correlated to the increase in liver LDU (R = −0.6684; p = 0.035) and liver/body relative weight (R = −0.6946; p = 0.026) and (ii) positively correlated to serum IgG2b levels (R = 0.8817; p = 0.001).

Conclusions

We found that mice lacking B2R display increased susceptibility to the infection by Leishmania (L.) chagasi. Our findings suggest that activation of the bradykinin/B2R pathway contributes to development of host resistance to visceral leishmaniasis.

【 授权许可】

   
2012 Nico et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151019082211298.pdf 441KB PDF download
Figure 5. 52KB Image download
Figure 4. 26KB Image download
Figure 3. 42KB Image download
Figure 2. 52KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]World Health Organization: Leishmaniasis: background information. http://www.who.int/leishmaniasis/en/ webcite].
  • [2]Palatnik-de-Sousa CB, Day MJ: One Health: the Global Challenge of Epidemic and Endemic Leishmaniasis. Parasites & Vectors 2011, 4:197-207.
  • [3]Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L: Canine leishmaniosis - new concepts and insights on an expanding zoonosis: part one. Trends Parasitol 2008, 24:324-330.
  • [4]Borja-Cabrera GP, Santos FN, Santos FB, Trivellato FA, Kawasaki JK, Costa AC, Castro T, Nogueira FS, Moreira MA, Luvizotto MC, Palatnik M, Palatnik-de-Sousa CB: Immunotherapy with the saponin enriched-Leishmune vaccine versus immunochemotherapy in dogs with natural canine visceral leishmaniasis. Vaccine 2010, 28:597-603.
  • [5]Palatnik-de-Sousa CB: Vaccines for leishmaniasis in the fore coming 25 years. Vaccine 2008, 26:1709-1724.
  • [6]Bradley DJ, Kirkley J: Regulation of Leishmania populations within the host. I. the variable course of Leishmania donovani infections in mice. Clin Exp Immunol 1977, 30:119-129.
  • [7]Sanchez-Robert E, Altet L, Sanchez A, Francino O: Polymorphism of Slc11a1 (Nramp1) gene and canine leishmaniasis in a case–control study. J Hered 2005, 96:755-758.
  • [8]Mehrotra S, Fakiola M, Mishra A, Sudarshan M, Tiwary P, Rani DS, Thangaraj K, Rai M, Sundar S, Blackwell JM: Genetic and functional evaluation of the role of DLL1 in susceptibility to visceral leishmaniasis in India. Infect Genet Evol 2012, 12:1195-1201.
  • [9]Blackwell JM, Searle S, Mohamed H, White JK: Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Immunol Lett 2003, 85:197-203.
  • [10]Farouk S, Salih MA, Musa AM, Blackwell JM, Miller EN, Khalil EA, Elhassan AM, Ibrahim ME, Mohamed HS: Interleukin 10 gene polymorphisms and development of post kala-azar dermal leishmaniasis in a selected sudanese population. Public Health Genomics 2010, 13:362-367.
  • [11]Ettinger NA, Duggal P, Braz RF, Nascimento ET, Beaty TH, Jeronimo SM, Pearson RD, Blackwell JM, Moreno L, Wilson ME: Genetic admixture in Brazilians exposed to infection with Leishmania chagasi. Ann Hum Genet 2009, 73:304-313.
  • [12]Aliberti J, Viola JP, Vieira-de-Abreu A, Bozza PT, Sher A, Scharfstein J: Cutting edge: bradykinin induces IL-12 production by dendritic cells: a danger signal that drives Th1 polarization. J Immunol 2003, 170:5349-5353.
  • [13]Monteiro AC, Schmitz V, Morrot A, de Arruda LB, Nagajyothi F, Granato A, Pesquero JB, Müller-Esterl W, Tanowitz HB, Scharfstein J: Bradykinin B2 Receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses. PLoS Pathog 2007, 3(11):e185.
  • [14]Monteiro AC, Schmitz V, Svensjo E, Gazzinelli RT, Almeida IC, Todorov A, de Arruda LB, Torrecilhas AC, Pesquero JB, Morrot A, Bouskela E, Bonomo A, Lima AP, Müller-Esterl W, Scharfstein J: Cooperative activation of TLR2 and bradykinin B2 receptor is required for induction of type 1 immunity in a mouse model of subcutaneous infection by Trypanosoma cruzi. J Immunol 2006, 177:6325-6335.
  • [15]Scharfstein J, Svensjö E: The kallikrein-kinin system in parasitic infections. Chapter 20. In Kinins. 1st edition. Edited by Bader M. KG, Berlin/Boston; 2012:321-330.
  • [16]Monteiro AC, Scovino A, Raposo S, Gaze VM, Cruz C, Svensjö E, Narciso MS, Colombo AP, Pesquero JB, Feres-Filho E, Nguyen KA, Sroka A, Potempa J, Scharfstein J: Kinin danger signals proteolytically released by gingipain induce Fimbriae-specific IFN-gamma- and IL-17-producing T cells in mice infected intramucosally with Porphyromonas gingivalis. J Immunol 2009, 183:3700-3711.
  • [17]Svensjö E, Batista PR, Brodskyn CI, Silva R, Lima AP, Schmitz V, Saraiva E, Pesquero JB, Mori MA, Müller-Esterl W, Scharfstein J: Interplay between parasite cysteine proteases and the host kinin system modulates microvascular leakage and macrophage infection by promastigotes of the Leishmania donovani complex. Microbes Infect 2006, 8:206-220.
  • [18]Bradley DJ: The genetics of susceptibility and resistence in the vertebrate host. In The Leishmaniaisis, Vol. 2. 1st edition. Edited by Peters W, Killick Kendrick R. Academic Press, London; 1987:551-581.
  • [19]Oliveira CI, Teixiera MJ, Gomes R, Barral A, Brodskyn C: Animal models for infectious diseases caused by parasites: Leishmaniasis. Drug Discov Today 2004, 1:81-86.
  • [20]Wilson ME, Jeronimo SM, Pearson RD: Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog 2005, 38:147-160.
  • [21]Sakthianandeswaren A, Foote SJ, Handman E: The role of host genetics in leishmaniasis. Trends Parasitol 2009, 25:383-391.
  • [22]Bradley DJ: Regulation of Leishmania populations within the host. II. genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin Exp Immunol 1977, 30:130-140.
  • [23]Ato M, Stäger S, Engwerda CR, Kaye PM: Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nat Immunol 2002, 3:1185-1191.
  • [24]Costa R, Motta EM, Dutra RC, Manjavachi MN, Bento AF, Malinsky FR, Pesquero JB, Calixto JB: Anti-nociceptive effect of kinin B1 and B2 receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 2011, 164:681-693.
  • [25]Rupniak NM, Boyce S, Webb JK, Williams AR, Carlson EJ, Hill RG, Borkowski JA, Hess JF: Effects of the bradykinin B1 receptor antagonist des-Arg9[Leu8]bradykinin and genetic disruption of the B2 receptor on nociception in rats and mice. Pain 1997, 71:89-97.
  • [26]Santos WR, de Lima VM, de Souza EP, Bernardo RR, Palatnik M, de Sousa Palatnik CB: Saponins, IL12 and BCG adjuvant in the FML-vaccine formulation against murine visceral leishmaniasis. Vaccine 2002, 21:30-43.
  • [27]Nico D, Claser C, Borja-Cabrera GP, Travassos LR, Palatnik M, Soares IS, Rodrigues MM, Palatnik-de-Sousa CB: Adaptive immunity against Leishmania nucleoside hydrolase maps its C-terminal domain as the target of the CD4+ T cell-driven protective response. PLoS Negl Trop Dis 2010, 4(11):e866.
  • [28]Stober CB, Jeronimo SM, Pontes NN, Miller EN, Blackwell JM: Cytokine Responses to Novel Antigens in a Peri-Urban Population in Brazil Exposed to Leishmania infantum chagasi. AmJTrop Med Hyg 2012. Epub ahead of print
  • [29]Abánades DR, Arruda LV, Arruda ES, Pinto JR, Palma MS, Aquino D, Caldas AJ, Soto M, Barral A, Barral-Netto M: Immunodominant antigens of Leishmania chagasi associated with protection against human visceral leishmaniasis. PLoS Negl Trop Dis 2012, 6:e1687.
  • [30]Palatnik-de-Sousa CB: Vaccines for canine leishmaniasis. Front Immunol 2012, 3:69.
  • [31]Plotkin SA: Correlates of protection induced by vaccination. Clin Vaccine Immunol 2010, 17:1055-1065.
  • [32]Day MJ: Immunoglobulin G subclass distribution in canine leishmaniosis: a review and analysis of pitfalls in interpretation. Vet Parasitol 2007, 147:2-8.
  • [33]Rafati S, Nakhaee A, Taheri T, Taslimi Y, Darabi H, Eravani D, Sanos S, Kaye P, Taghikhani M, Jamshidi S, Rad MA: Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine 2005, 23:3716-3725.
  • [34]Oliveira TM, Mineo TW, Bason M, Day MJ, Machado RZ: IgG subclass profile of serum antibodies to Leishmania chagasi in naturally infected and vaccinated dogs. Vet Parasitol 2009, 162:16-22.
  • [35]Mauricio IL, Yeo M, Baghaei M, Doto D, Pratlong F: Towards multilocus sequence typing of the Leishmania donovani complex: resolving genotypes and haplotypes for five polymorphic metabolic enzymes (ASAT, GPI, NH1, NH2, PGD). Int J Parasitol 2006, 36:757-769.
  • [36]Versées W, Goeminne A, Berg M, Vandemeulebroucke A, Haemers A, Augustyns K, Steyaert J: Crystal structures of T. vivax nucleoside hydrolase in complex with new potent and specific inhibitors. Biochim Biophys Acta 2009, 1794:953-960.
  • [37]Santana DM, Borja-Cabrera GP, de Paraguai Souza E, Sturm NR, de Palatnik Sousa CB, Campbell DA: Nucleoside hydrolase from Leishmania(L.) donovani is an antigen diagnostic for visceral leishmaniasis. Mol Biochem Parasitol 2002, 120:315-319.
  • [38]Cotterell SE, Engwerda CR, Kaye PM: Enhanced hematopoietic activity accompanies parasite expansion in the spleen and bone marrow of mice infected with Leishmania donovani. Infect Immun 2000, 68:1840-1848.
  • [39]Carrión J, Nieto A, Iborra S, Iniesta V, Soto M, Folgueira C, Abanades DR, Requena JM, Alonso C: Immunohistological features of visceral leishmaniasis in BALB/c mice. Parasite Immunol 2006, 28:173-183.
  • [40]Stanley AC, Engwerda CR: Balancing immunity and pathology in visceral leishmaniasis. Immunol Cell Biol 2007, 85:138-147.
  • [41]Palatnik-de-Sousa CB, Barbosa AF, Oliveira SM, Nico D, Bernardo RR, Santos WR, Rodrigues MM, Soares I, Borja Cabrera GP: The FML-vaccine against canine visceral leishmaniasis: from the second generation to the synthetic vaccine. Exp. Rev Vaccines 2008, 7:833-851.
  文献评价指标  
  下载次数:34次 浏览次数:20次