期刊论文详细信息
BMC Medical Genomics
Genome-wide search for the genes accountable for the induced resistance to HIV-1 infection in activated CD4+ T cells: apparent transcriptional signatures, co-expression networks and possible cellular processes
Hua-Tang Zhang1  Di-Qiu Liu3  Andrew Willden2  Yan Guo3  Ling Chen6  Dai Chen4  Miao-Jun Han5  Wen-Wen Xu5 
[1] Chongqing Center for Biomedical Research and Equipment Development, Chongqing Academy of Science and Technology, Chongqing, China;Editorial Department, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China;Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Jiaochang East Road 32, Kunming, Yunnan Province, 650223 China;Novel Bioinformatics Co., Ltd, Shanghai, China;Graduate University of Chinese Academy of Sciences, Beijing, China;Yunnan centers for disease control and prevention, Kunming, China
关键词: CD3/CD28 costimulation;    CD4 + T cells;    Resistance;    Susceptibility;    HIV-1;   
Others  :  1092449
DOI  :  10.1186/1755-8794-6-15
 received in 2012-12-31, accepted in 2013-04-23,  发布年份 2013
PDF
【 摘 要 】

Background

Upon co-stimulation with CD3/CD28 antibodies, activated CD4 + T cells were found to lose their susceptibility to HIV-1 infection, exhibiting an induced resistant phenotype. This rather unexpected phenomenon has been repeatedly confirmed but the underlying cell and molecular mechanisms are still unknown.

Methods

We first replicated the reported system using the specified Dynal beads with PHA/IL-2-stimulated and un-stimulated cells as controls. Genome-wide expression and analysis were then performed by using Agilent whole genome microarrays and established bioinformatics tools.

Results

We showed that following CD3/CD28 co-stimulation, a homogeneous population emerged with uniform expression of activation markers CD25 and CD69 as well as a memory marker CD45RO at high levels. These cells differentially expressed 7,824 genes when compared with the controls on microarrays. Series-Cluster analysis identified 6 distinct expression profiles containing 1,345 genes as the representative signatures in the permissive and resistant cells. Of them, 245 (101 potentially permissive and 144 potentially resistant) were significant in gene ontology categories related to immune response, cell adhesion and metabolism. Co-expression networks analysis identified 137 “key regulatory” genes (84 potentially permissive and 53 potentially resistant), holding hub positions in the gene interactions. By mapping these genes on KEGG pathways, the predominance of actin cytoskeleton functions, proteasomes, and cell cycle arrest in induced resistance emerged. We also revealed an entire set of previously unreported novel genes for further mining and functional validation.

Conclusions

This initial microarray study will stimulate renewed interest in exploring this system and open new avenues for research into HIV-1 susceptibility and its reversal in target cells, serving as a foundation for the development of novel therapeutic and clinical treatments.

【 授权许可】

   
2013 Xu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128184351597.pdf 2294KB PDF download
Figure 9. 49KB Image download
Figure 8. 65KB Image download
Figure 7. 154KB Image download
Figure 6. 132KB Image download
Figure 5. 159KB Image download
Figure 4. 75KB Image download
Figure 3. 164KB Image download
Figure 2. 125KB Image download
Figure 1. 149KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ: Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008, 319(5865):921-926.
  • [2]Konig R, Zhou YY, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE: Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008, 135(1):49-60.
  • [3]Zhou HL, Xu M, Huang Q, Gates AT, Zhang XHD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ: Genome-Scale RNAi Screen for Host Factors Required for HIV Replication. Cell Host Microbe 2008, 4(5):495-504.
  • [4]Yeung ML, Houzet L, Yedavalli VSRK, Jeang KT: A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 2009, 284(29):19463-19473.
  • [5]Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, Zhou HL, Hazuda DJ, Espeseth AS, Konig R: Host Cell Factors in HIV Replication: Meta-Analysis of Genome-Wide Studies. PLoS Pathog 2009, 5(5):e1000437.
  • [6]Mehla R, Ayyavoo V: Gene Array Studies in HIV-1 Infection. Curr HIV/AIDS Rep 2012, 9:34-43.
  • [7]Giri MS, Nebozhyn M, Showe L, Montaner LJ: Microarray data on gene modulation by HIV-1 in immune cells: 2000–2006. J Leukoc Biol 2006, 80(5):1031-1043.
  • [8]Li QS, Smith AJ, Schacker TW, Carlis JV, Duan L, Reilly CS, Haase AT: Microarray Analysis of Lymphatic Tissue Reveals Stage-Specific, Gene Expression Signatures in HIV-1 Infection. J Immunol 2009, 183(3):1975-1982.
  • [9]Smith AJ, Li QS, Wietgrefe SW, Schacker TW, Reilly CS, Haase AT: Host Genes Associated with HIV-1 Replication in Lymphatic Tissue. J Immunol 2010, 185(9):5417-5424.
  • [10]Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K: Global landscape of HIV-human protein complexes. Nature 2012, 481(7381):365-370.
  • [11]Zhang L, Zhang X, Ma Q, Zhou H: Host Proteome Research in HIV Infection. Genomics Proteomics Bioinformatics 2010, 8(1):1-9.
  • [12]Kontijevskis A, Wikberg JES, Komorowski J: Computational proteomics analysis of HIV‒1 protease interactome. Proteins Struct Function Bioinformatics 2007, 68(1):305-312.
  • [13]Limou S, Le Clerc S, Coulonges C, Carpentier W, Dina C, Delaneau O, Labib T, Taing L, Sladek R, Deveau C: Genomewide Association Study of an AIDS-Nonprogression Cohort Emphasizes the Role Played by HLA Genes (ANRS Genomewide Association Study 02). J Infect Dis 2009, 199(3):419-426.
  • [14]Le Clerc S, Limou S, Coulonges C, Carpentier W, Dina C, Taing L, Delaneau O, Labib T, Sladek R, Deveau C: Genomewide Association Study of a Rapid Progression Cohort Identifies New Susceptibility Alleles for AIDS (ANRS Genomewide Association Study 03). J Infect Dis 2009, 200(8):1194-1201.
  • [15]Guergnon J, Theodorou I: What did we learn on host’s genetics by studying large cohorts of HIV-1-infected patients in the genome-wide association era? Curr Opin HIV AIDS 2011, 6(4):290-296.
  • [16]Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002, 418(6898):646-650.
  • [17]Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J: The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 2004, 427(6977):848-853.
  • [18]Neil SJD, Zang T, Bieniasz PD: Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008, 451(7177):425-430.
  • [19]Tyagi M, Kashanchi F: New and novel intrinsic host repressive factors against HIV-1: PAF1 complex, HERC5 and others. Retrovirology 2012, 9(1):19. BioMed Central Full Text
  • [20]Liu L, Oliveira NMM, Cheney KM, Pade C, Dreja H, Bergin AMH, Borgdorff V, Beach DH, Bishop CL, Dittmar MT: A whole genome screen for HIV restriction factors. Retrovirology 2011, 8:94. BioMed Central Full Text
  • [21]Levy JA: Pathogenesis of human-immunodeficiency-virus infection. Microbiol Rev 1993, 57(1):183-289.
  • [22]Ho M, Armstrong J, McMahon D, Pazin G, Huang XL, Rinaldo C, Whiteside T, Tripoli C, Levine G, Moody D: A phase-1 study of adoptive transfer of autologous CD8+ T-lymphocytes in patients with acquired-immunodeficiency-syndrome (AIDS)-related complex or AIDS. Blood 1993, 81(8):2093-2101.
  • [23]Roederer M, Raju PA, Mitra DK, Herzenberg LA: HIV does not replicate in naive CD4 T cells stimulated with CD3/CD28. J Clin Invest 1997, 99(7):1555.
  • [24]Mengozzi M, Malipatlolla M, De Rosa SC, Herzenberg LA, Roederer M: Naive CD4 T cells inhibit CD28-costimulated R5 HIV replication in memory CD4 T cells. Proc Natl Acad Sci 2001, 98(20):11644.
  • [25]Barker E, Bossart KN, Levy JA: Differential effects of CD28 costimulation on HIV production by CD4+ cells. J Immunol 1998, 161(11):6223.
  • [26]Spina CA, Prince HE, Richman DD: Preferential replication of HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro. J Clin Invest 1997, 99(7):1774-1785.
  • [27]Levine BL, Mosca JD, Riley JL, Carroll RG, Vahey MT, Jagodzinski LL, Wagner KF, Mayers DL, Burke DS, Weislow OS: Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science 1996, 272(5270):1939.
  • [28]Carroll RG, Riley JL, Levine BL, Feng Y, Kaushal S, Ritchey DW, Bernstein W, Weislow OS, Brown CR, Berger EA: Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+ T cells. Science 1997, 276(5310):273-276.
  • [29]Wright GW, Simon RM: A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 2003, 19(18):2448.
  • [30]Yang H, Crawford N, Lukes L, Finney R, Lancaster M, Hunter KW: Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exper Meta 2005, 22(7):593-603.
  • [31]Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 2008, 8(1):37-49.
  • [32]Ramoni MF, Sebastiani P, Kohane IS: Cluster analysis of gene expression dynamics. Proc Natl Acad Sci 2002, 99(14):9121.
  • [33]Miller LD, Long PM, Wong L, Mukherjee S, McShane LM, Liu ET: Optimal gene expression analysis by microarrays. Cancer Cell 2002, 2(5):353-361.
  • [34]Harris MA, Clark JI, Ireland A, Lomax J, Ashburner M, Collins R, Eilbeck K, Lewis S, Mungall C, Richter J: The Gene Ontology (GO) project in 2006. Nucleic Acids Res 2006, 34:D322-D326.
  • [35]Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B: Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 2007, 39(11):1338-1349.
  • [36]Prieto C, Risueno A, Fontanillo C, De las Rivas J: Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS One 2008, 3(12):e3911.
  • [37]Barabasi AL, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat rev 2004, 5(2):101-113.
  • [38]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297(5586):1551-1555.
  • [39]Chen F, Zhu HH, Zhou LF, Li J, Zhao LY, Wu SS, Wang J, Liu W, Chen Z: Genes related to the very early stage of ConA-induced fulminant hepatitis: a gene-chip-based study in a mouse model. BMC Genomics 2010, 11(1):240. BioMed Central Full Text
  • [40]Chen L, Xu W-w, Han M-j, Guo Y, Wang J, Cui W-q, Jia M-h, Ma Y-l, Lu L, Zhang H-T: CD3/CD28 costimulation-induced resistance to HIV-1 and cell subsets analysis. Int J Immunol 2011, 34(5):297-301.
  • [41]Zheng Q, Wang XJ: GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 2008, 36(suppl 2):W358-W363.
  • [42]Jonathan D, John P, David R: The biological context of HIV-1 host interactions reveals subtle insights into a system hijack. BMC Syst Biol 2010, 4:80. BioMed Central Full Text
  • [43]Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411(6833):41-42.
  • [44]Oswald-Richter K, Grill SM, Leelawong M, Tseng M, Kalams SA, Hulgan T, Haas DW, Unutmaz D: Identification of a CCR5-expressing T cell subset that is resistant to R5-tropic HIV infection. PLoS Pathog 2007, 3(4):e58.
  • [45]Creson JR, Lin AA, Li Q, Broad DF, Roberts MR, Anderson SJ: The mode and duration of anti-CD28 costimulation determine resistance to infection by macrophage-tropic strains of human immunodeficiency virus type 1 in vitro. J Virol 1999, 73(11):9337-9347.
  • [46]Riley JL, Levine BL, Craighead N, Francomano T, Kim D, Carroll RG, June CH: Native and memory CD4 T cells differ in their susceptibilities to human immunodeficiency virus type 1 infection following CD28 costimulation: Implications for transmission and pathogenesis. J Virol 1998, 72(10):8273-8280.
  • [47]Naghavi MH, Goff SP: Retroviral proteins that interact with the host cell cytoskeleton. Curr Opin Immunol 2007, 19(4):402-407.
  • [48]Liu Y, Belkina NV, Shaw S: HIV Infection of T Cells: Actin-in and Actin-out. Sci Signal 2009, 2(66):pe23.
  • [49]Foley JF, Yu CR, Solow R, Yacobucci M, Peden KWC, Farber JM: Roles for CXC chemokine ligands 10 and 11 in recruiting CD4+ T cells to HIV-1-infected monocyte-derived macrophages, dendritic cells, and lymph nodes. J Immunol 2005, 174(8):4892.
  • [50]Butler SL, Johnson EP, Bushman FD: Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J Virol 2002, 76(8):3739-3747.
  • [51]Schwartz O, Maréchal V, Friguet B, Arenzana-Seisdedos F, Heard JM: Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J Virol 1998, 72(5):3845-3850.
  • [52]Baumeister W, Walz J, Proteolysis C: The proteasome: paradigm review of a self-compartmentalizing protease. Cell 1998, 92:367-380.
  • [53]Coux O, Tanaka K, Goldberg AL: Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996, 65(1):801-847.
  • [54]Wei BL, Denton PW, O’Neill E, Luo T, Foster JL, Garcia JV: Inhibition of lysosome and proteasome function enhances human immunodeficiency virus type 1 infection. J Virol 2005, 79(9):5705-5712.
  • [55]Sankaran S, Guadalupe M, Reay E, George MD, Flamm J, Prindiville T, Dandekar S: Gut mucosal T cell responses and gene expression correlate with protection against disease in long-term HIV-1-infected nonprogressors. Proc Natl Acad Sci USA 2005, 102(28):9860-9865.
  • [56]Salgado M, Lopez-Romero P, Callejas S, Lopez M, Labarga P, Dopazo A, Soriano V, Rodes B: Characterization of host genetic expression patterns in HIV-infected individuals with divergent disease progression. Virology 2011, 411(1):103-112.
  • [57]Varbanov M, Espert L, Biard-Piechaczyk M: Mechanisms of CD4 T-cell depletion triggered by HIV-1 viral proteins. AIDS Rev 2006, 8(4):221-236.
  • [58]MacPherson JI, Dickerson JE, Pinney JW, Robertson DL: Patterns of HIV-1 protein interaction identify perturbed host-cellular subsystems. PLoS Comput Biol 2010, 6(7):e1000863.
  • [59]Krishnan V, Zeichner SL: Host cell gene expression during human immunodeficiency virus type I latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J Virol 2004, 78(17):9458-9473.
  • [60]Chun TW, Justement JS, Lempicki RA, Yang J, Dennis G, Hallahan CW, Sanford C, Pandya P, Liu S, McLaughlin M: Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals. Proc Natl Acad Sci 2003, 100(4):1908-1913.
  • [61]Huang T, Xu Z, Chen L, Cai YD, Kong X: Computational Analysis of HIV-1 Resistance Based on Gene Expression Profiles and the Virus-Host Interaction Network. PLoS One 2011, 6(3):e17291.
  文献评价指标  
  下载次数:88次 浏览次数:38次