期刊论文详细信息
Radiation Oncology
Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells
Michael J Atkinson4  Michaela Aubele5  Gert Auer1  Natalie Ludyga5  Herbert Braselmann2  Kristina Rappl5  Iria Gonzalez Vasconcellos3  Ines Höfig3  Nataša Anastasov3 
[1] Department of Oncology and Pathology, Karolinska Institute and Hospital, Stockholm, Sweden;Research Unit of Radiation Cytogenetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Muenchen, Germany;Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Muenchen, Germany;Radiation Biology, Institute of Radiation Oncology, Technical University Munich, Munich, Germany;Institute of Pathology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Muenchen, Germany
关键词: G2/M checkpoint arrest;    Radiation resistance;    Breast cancer;    MiR-21;   
Others  :  1154955
DOI  :  10.1186/1748-717X-7-206
 received in 2012-06-29, accepted in 2012-11-23,  发布年份 2012
PDF
【 摘 要 】

Background

There is evidence that the extent of the G2/M arrest following irradiation is correlated with tumour cell survival and hence therapeutic success. We studied the regulation of cellular response to radiation treatment by miR-21-mediated modulation of cell cycle progression in breast cancer cells and analysed miR-21 expression in breast cancer tissue samples with long-term follow up.

Methods

The miR-21 expression levels were quantified (qRT-PCR) in a panel of 86 cases of invasive breast carcinomas in relation to metastasis free survival. The cellular radiosensitivity of human breast cancer cells after irradiation was determined comparing two cell lines (T47D and MDA-MB-361) by cell proliferation and colony forming assays. The influence of miR-21 overexpression or downregulation on cell cycle progression and G2/M checkpoint arrest after irradiation was assessed by flow cytometric analysis.

Results

The expression of miR-21 was transiently increased 8 hours after irradiation in the radioresistant T47D cells and significantly changed with lower extent in radiosensitive MDA-MB-361 cells. Anti-miR-21 treated breast cancer cells failed to exhibit the DNA damage-G2 checkpoint increase after irradiation. Apoptotic activity was significantly enhanced from 7% to 27% in T47D cells and from 18% to 30% in MDA-MB-361 cells 24 hours after 5 Gy irradiation. Additionally, we characterized expression of miR-21 in invasive breast carcinomas. In comparison to non-cancerous adjacent breast tissue, tumours samples had increased miR-21 expression that inversely correlated with the distant metastases-free survival of patients (p = 0.029).

Conclusions

Our data indicate that miR-21 expression in breast cancer cells contributes to radiation resistance by compromising cell cycle progression. These data point to the potential of combining radiotherapy with an anti-miR-21 as a potent G2/M check point inhibitor in overcoming radiation resistance of tumours.

【 授权许可】

   
2012 Anastasov et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407111338284.pdf 1254KB PDF download
Figure 6. 78KB Image download
Figure 5. 53KB Image download
Figure 4. 84KB Image download
Figure 3. 62KB Image download
Figure 2. 81KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
  • [2]Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6(11):857-866.
  • [3]Ventura A, Jacks T: MicroRNAs and cancer: short RNAs go a long way. Cell 2009, 136(4):586-591.
  • [4]Volinia S, Calin , Liu GA, Ambs CG, Cimmino S, Petrocca A, Visone F, Iorio R, Roldo M, Ferracin C, et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006, 103(7):2257-2261.
  • [5]Lu J, Getz , Miska G, Alvarez-Saavedra EA, Lamb E, Peck J, Sweet-Cordero D, Ebert A, Mak BL, Ferrando RH, et al.: MicroRNA expression profiles classify human cancers. Nature 2005, 435(7043):834-838.
  • [6]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri S, Pedriali M, Fabbri M, Campiglio M, et al.: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005, 65(16):7065-7070.
  • [7]Chaudhry MA: Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells. Cancer Biother Radiopharm 2009, 24(1):49-56.
  • [8]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
  • [9]Mendell JT: MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 2005, 4(9):1179-1184.
  • [10]Jameel JK, Rao VS, Cawkwell L, Drew PJ: Radioresistance in carcinoma of the breast. Breast 2004, 13(6):452-460.
  • [11]Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ: MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007, 67(23):11111-11116.
  • [12]Maes OC, An J, Sarojini H, Wu H, Wang E: Changes in MicroRNA expression patterns in human fibroblasts after low-LET radiation. J Cell Biochem 2008, 105(3):824-834.
  • [13]Wagner-Ecker M, Schwager C, Wirkner U, Abdollahi A, Huber P, et al.: MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol 2010, 5:25. BioMed Central Full Text
  • [14]Kraemer A, Anastasov N, Angermeier M, Winkler K, Atkinson MJ, Moertl S: MicroRNA-mediated processes are essential for the cellular radiation response. Radiat Res 2011, 176(5):575-586.
  • [15]Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN: Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2007, 67(24):11612-11620.
  • [16]Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene 2007, 26(19):2799-2803.
  • [17]Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008, 283(2):1026-1033.
  • [18]Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008, 14(11):2348-2360.
  • [19]Yu Z, Baserga R, Chen L, Wang C, Lisanti M, Pestell R: microRNA, cell cycle, and human breast cancer. Am J Pathol 2010, 176(3):1058-1064.
  • [20]Strunz AM, Peschke P, Waldeck W, Ehemann V, Kissel M, Debus J: Preferential radiosensitization in p53-mutated human tumour cell lines by pentoxifylline-mediated disruption of the G2/M checkpoint control. Int J Radiat Biol 2002, 78(8):721-732.
  • [21]Suganuma M, Kawabe T, Hori H, Funabiki T, Okamoto T: Sensitization of cancer cells to DNA damage-induced cell death by specific cell cycle G2 checkpoint abrogation. Cancer Res 1999, 59(23):5887-5891.
  • [22]Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 1997, 88(3):323-331.
  • [23]Anastasov N, Klier M, Koch I, Angermeier D, Hofler H, Fend F, Quintanilla-Martinez L: Efficient shRNA delivery into B and T lymphoma cells using lentiviral vector-mediated transfer. J Hematop 2009, 2(1):9-19.
  • [24]Anastasov N, Bonzheim I, Rudelius M, Klier M, Dau T, Angermeier D, Duyster J, Pittaluga S, Fend F, Raffeld M, Quintanilla-Martinez L: C/EBPbeta expression in ALK-positive anaplastic large cell lymphomas is required for cell proliferation and is induced by the STAT3 signaling pathway. Haematologica 2010, 95(5):760-767.
  • [25]Aubele M, Walch AK, Ludyga N, Braselmann H, Atkinson MJ, Luber B, Auer G, Tapio S, Cooke T, Bartlett JM: Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term survival of breast cancer patients. Br J Cancer 2008, 99(7):1089-1095.
  • [26]Chen C, Ridzon D, Broomer A, Zhou AJA, Lee Z, Nguyen DH, Barbisin JT, Xu M, Mahuvakar NL, Andersen NL, et al.: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33(20):e179.
  • [27]Klier M, Anastasov N, Hermann A, Meindl T, Angermeier D, Raffeld M, Fend F, Quintanilla-Martinez L: Specific lentiviral shRNA-mediated knockdown of cyclin D1 in mantle cell lymphoma has minimal effects on cell survival and reveals a regulatory circuit with cyclin D2. Leukemia 2008, 22(11):2097-2105.
  • [28]Nusse M, Beisker W, Kramer J, Miller B, Schreiber GA, Viaggi S, Weller EM, Wessels JM: Measurement of micronuclei by flow cytometry. Methods Cell Biol 1994, 42(Pt B):149-158.
  • [29]Elston CW, Ellis IO: Pathological prognostic factors in breast cancer I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991, 19(5):403-410.
  • [30]Aubele M, Auer G, Walch AK, Munro A, Atkinson MJ, Braselmann H, Fornander T, Bartlett JM: PTK (protein tyrosine kinase)-6 and HER2 and 4, but not HER1 and 3 predict long-term survival in breast carcinomas. Br J Cancer 2007, 96(5):801-807.
  • [31]Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, Fu J, Zeng MS, Yun JP, Wu QL, et al.: Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res 2011, 13(1):R2. BioMed Central Full Text
  • [32]Krichevsky AM, Gabriely G: miR-21: a small multi-faceted RNA. J Cell Mol Med 2009, 13(1):39-53.
  • [33]Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005, 65(14):6029-6033.
  • [34]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007, 133(2):647-658.
  • [35]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27(15):2128-2136.
  • [36]Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struh K: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010, 39(4):493-506.
  • [37]Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ Jr, Lazo JS, Wang Z, Zhang L, Yu J: microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 2009, 69(20):8157-8165.
  • [38]Li Y, Zhao S, Zhen Y, Li Q, Teng L, Asai A, Kawamoto K: A miR-21 inhibitor enhances apoptosis and reduces G(2)-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol 2011, 28(3):209-214.
  • [39]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008, 27(31):4373-4379.
  • [40]Gwak HS, Kim TH, Jo GH, Kim YJ, Kwak HJ, Kim JH, Yin J, Yoo H, Lee SH, Park JB: Silencing of MicroRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS One 2012, 7(10):e47449.
  • [41]Kawabe T: G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 2004, 3(4):513-519.
  • [42]Lee JA, Lee HY, Lee ES, Kim I, Bae JW: Prognostic implications of MicroRNA-21 overexpression in invasive ductal carcinomas of the breast. J Breast Cancer 2011, 14(4):269-275.
  文献评价指标  
  下载次数:54次 浏览次数:14次