期刊论文详细信息
Molecular Neurodegeneration
Beclin 1 regulates neuronal transforming growth factor-β signaling by mediating recycling of the type I receptor ALK5
Tony Wyss-Coray1  Hui Zhang1  Liana Bonanno2  Caitlin E. O’Brien1 
[1] Center for Tissue Regeneration, Repair, and Restoration, Veteran Administration Palo Alto Health Care System, Palo Alto, CA 94304, USA;Graduate Program in Neuroscience, Stanford University School of Medicine, Stanford 94305, CA, USA
关键词: Neurodegeneration;    Receptor recycling;    Protein sorting;    ALK5;    TGF-β;    Retromer;    VPS34;    Beclin 1;   
Others  :  1235066
DOI  :  10.1186/s13024-015-0065-0
 received in 2015-07-30, accepted in 2015-12-10,  发布年份 2015
PDF
【 摘 要 】

Background

Beclin 1 is a key regulator of multiple trafficking pathways, including autophagy and receptor recycling in yeast and microglia. Decreased beclin 1 levels in the CNS result in neurodegeneration, an effect attributed to impaired autophagy. However, neurons also rely heavily on trophic factors, and signaling through these pathways requires the proper trafficking of trophic factor receptors.

Results

We discovered that beclin 1 regulates signaling through the neuroprotective TGF-β pathway. Beclin 1 is required for recycling of the type I TGF-β receptor ALK5. We show that beclin 1 recruits the retromer to ALK5 and facilitates its localization to Rab11 +endosomes. Decreased levels of beclin 1, or its binding partners VPS34 and UVRAG, impair TGF-β signaling.

Conclusions

These findings identify beclin 1 as a positive regulator of a trophic signaling pathway via receptor recycling, and suggest that neuronal death induced by decreased beclin 1 levels may also be due to impaired trophic factor signaling.

【 授权许可】

   
2015 O’Brien et al.

【 预 览 】
附件列表
Files Size Format View
20151231041440204.pdf 2000KB PDF download
Fig. 7. 51KB Image download
Fig. 6. 133KB Image download
Fig. 5. 80KB Image download
Fig. 4. 77KB Image download
Fig. 3. 67KB Image download
Fig. 2. 118KB Image download
Fig. 1. 82KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Tsukada M. Isolation and charact zation of autophagy-defective mutants of. FEBS Lett. 1993; 333:169-174.
  • [2]Rothman JH, Howald I, Stevens TH. Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae. EMBO J. 1989; 8:2057-2065.
  • [3]Robinson JS, Klionsky DJ, Banta LM, Emr SD. Protein sorting in saccharomyces cerevisiae : isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol. 1988; 8:4936-4948.
  • [4]Seaman MN, Marcusson EG, Cereghino JL, Emr SD. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol. 1997; 137:79-92.
  • [5]Lucin KM, O’Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ et al.. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron. 2013; 79:873-886.
  • [6]Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA et al.. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest. 2008; 118:2190-2199.
  • [7]Mcknight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z et al.. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet. 2014; 10:1-18.
  • [8]Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al.. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006; 441:885-889.
  • [9]Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al.. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006; 441:880-884.
  • [10]Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD. TGF-beta signaling specifies axons during brain development. Cell. 2010; 142:144-157.
  • [11]Bialas AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. 2013; 16:1773-1782.
  • [12]He Y, Zhang H, Yung A, Villeda SA, Jaeger PA, Olayiwola O et al.. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nat Neurosci. 2014; 17(7):943-952.
  • [13]Chin J, Liu R, Cleary LJ, Eskin A, Byrne JH. TGF- β 1-induced long-term changes in neuronal excitability in Aplysia sensory neurons depend on MAPK. J Neurophysiol. 2006; 95(5):3286-3290.
  • [14]Caraci F, Gulisano W, Guida CA, Impellizzeri AAR, Drago F, Puzzo D et al.. A key role for TGF-β1 in hippocampal synaptic plasticity and memory. Sci Rep. 2015; 5:11252.
  • [15]Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS. TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation. 2010; 7:62. BioMed Central Full Text
  • [16]Dobolyi A, Vincze C, Pál G, Lovas G. The neuroprotective functions of transforming growth factor Beta proteins. Int J Mol Sci. 2012; 13:8219-8258.
  • [17]Caraci F, Battaglia G, Busceti C, Biagioni F, Mastroiacovo F, Bosco P et al.. TGF-β protects against Aβ-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiol Dis. 2008; 30:234-242.
  • [18]Prehn JHM, Bindokas VP, Jordan J, Galindo MF, Ghadge GD, Roos RP et al.. Effect of transforming growth factor-1 on beta-amyloid neurotoxicity in Rat Hippocampal neurons. Mol Pharmacol. 1996; 49:319-328.
  • [19]Tesseur I, Zou K, Esposito L, Bard F, Berber E, Van CJ et al.. Deficiency in neuronal TGF- β signaling promotes neurodegeneration and Alzheimer’ s pathology. J Clin Invest. 2006; 116:3060-3069.
  • [20]Ueberham U, Ueberham E, Gruschka H, Arendt T. Altered subcellular location of phosphorylated smads in Alzheimer’s disease. Eur J Neurosci. 2006; 24:2327-2334.
  • [21]Chalmers KA, Love S. Neurofibrillary tangles may interfere with Smad 2/3 signaling in neurons. J Neuropathol Exp Neurol. 2007; 66:158-167.
  • [22]Wells RG, Gilboa L, Sun Y, Liu X, Henis YI, Lodish HF. Transforming growth factor-beta induces formation of a dithiothreitol-resistant type I/Type II receptor complex in live cells. J Biol Chem. 1999; 274:5716-5722.
  • [23]Yamashita H, ten Dijke P, Franzén P, Miyazono K, Heldin CH. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem. 1994; 269:20172-20178.
  • [24]Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003; 113:685-700.
  • [25]Mitchell H, Choudhury A, Pagano RE, Leof EB. Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell. 2004; 15(September):4166-4178.
  • [26]Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH et al.. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-beta receptor for degradation state university of New York at stony brook. Mol Cell. 2000; 6:1365-1375.
  • [27]Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phaosphatidylinositol 3-kinase complex functions at the trans -Golgi network. EMBO Rep. 2001; 2:330-335.
  • [28]Liang XH, Kleeman LK, Jiang HH, Goldman JE, Berry G, Herman B et al.. Protection against fatal sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein protection against fatal sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol. 1998; 72:8586-8596.
  • [29]Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-Beclin 1 interaction regulates autophagy induction. Sci Rep. 2013; 3:1055.
  • [30]Suzuki K, Kubota Y, Sekito T, Ohsumi Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells. 2007; 12:209-218.
  • [31]Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001; 152:519-530.
  • [32]Tesseur I, Zou K, Berber E, Zhang H, Wyss-Coray T. Highly sensitive and specific bioassay for measuring bioactive TGF-beta. BMC Cell Biol. 2006; 7:15. BioMed Central Full Text
  • [33]Obara K, Sekito T, Ohsumi Y. Assortment of Phosphatidylinositol 3-Kinase Complexes — Atg14p Directs Association of Complex I to the Pre-autophagosomal Structure in Saccharomyces cerevisiae. Mol Biol Cell. 2006; 17(April):1527-1539.
  • [34]Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science. 1993; 260:88-91.
  • [35]Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ et al.. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol. 2013; 15:461-471.
  • [36]Yin X, Murphy SJ, Wilkes MC, Ji Y, Leof EB. Retromer maintains basolateral distribution of the type II TGF-β receptor via the recycling endosome. Mol Biol Cell. 2013; 24:2285-2298.
  • [37]Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S et al.. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol. 2008; 183:513-526.
  • [38]Liang C, Lee J, Inn K, Gack MU, Li Q, Roberts EA et al.. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell. 2008; 10:776-787.
  • [39]He C, Wei Y, Sun K, Li B, Dong X, Zou Z et al.. Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell. 2013; 154:1085-1099.
  • [40]Tu S, Okamoto S-I, Lipton SA, Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener. 2014; 9:1-12. BioMed Central Full Text
  • [41]Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther. 2014; 142:244-257.
  • [42]Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H et al.. Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol. 2005; 58:909-919.
  • [43]Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN et al.. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011; 89:168-175.
  • [44]Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ et al.. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011; 89:162-167.
  • [45]Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F et al.. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. 2007; 39:168-177.
  • [46]Liang X, Slifer M, Martin ER, Schnetz-boutaud N, Anderson B, Züchner S et al.. Genomic convergence to identify candidate genes for Alzheimer disease on chromosome 10. Hum Mutat. 2009; 30:463-471.
  • [47]Lane RF, Raines SM, Steele JW, Ehrlich ME, Lah JA, Small SA et al.. Diabetes-associated SorCS1 regulates Alzheimer’s amyloid-beta metabolism: evidence for involvement of SorL1 and the retromer complex. J Neurosci. 2010; 30:13110-13115.
  • [48]Isaacs A, Johannsen P, Holm I, Nielsen J, Consortium FR. Frontotemporal dementia caused by CHMP2B mutations. Curre. 2011; 8:246-251.
  • [49]Cherry S, Jin EJ, Ozel MN, Lu Z, Agi E, Wang D et al.. Charcot-Marie-Tooth 2B mutations in rab7 cause dosage-dependent neurodegeneration due to partial loss of function. Elife. 2013; 2013:1-22.
  • [50]Kleinberger G, Yamanishi Y, Suárez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al.. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med. 2014; 6:243-286.
  • [51]Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R et al.. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci. 2009; 29:13578-13588.
  • [52]Fath T, Ke YD, Gunning P, Götz J, Ittner LM. Primary support cultures of hippocampal and substantia nigra neurons. Nat Protoc. 2009; 4:78-85.
  文献评价指标  
  下载次数:48次 浏览次数:20次