期刊论文详细信息
Stem Cell Research & Therapy
Autophagy promotes apoptosis of mesenchymal stem cells under inflammatory microenvironment
Ru-xing Wang2  Yanyun Zhang1  Xiao-rong Li2  Zhen-yu Yang2  Ling-ling Qian2  Ying Wu2  Ku-lin Li2  Jie Zheng2  Chang-ying Zhang2  Zhi-ming Yu2  Shipeng Dang1 
[1] Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China;Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
关键词: Bcl-2;    Sepsis;    Apoptosis;    Autophagy;    Mesenchymal stem cells;   
Others  :  1235599
DOI  :  10.1186/s13287-015-0245-4
 received in 2015-09-17, accepted in 2015-11-23,  发布年份 2015
PDF
【 摘 要 】

Background

Mesenchymal stem cells (MSCs) have been widely applied to treat various inflammatory diseases. Inflammatory cytokines can induce both apoptosis and autophagy in MSCs. However, whether autophagy plays a pro- or con-apoptosis effect on MSCs in an inflammatory microenvironment has not been clarified.

Methods

We inhibited autophagy by constructing MSCs with lentivirus containing small hairpin RNA to knockdown Beclin-1 and applied these MSCs to a model of sepsis to evaluate therapeutic effect of MSCs.

Results

Here we show that inhibition of autophagy in MSCs increases the survival rate of septic mice more than control MSCs, and autophagy promotes apoptosis of MSCs during application to septic mice. Further study demonstrated that autophagy aggravated tumor necrosis factor alpha plus interferon gamma-induced apoptosis of MSCs. Mechanically, autophagy inhibits the expression of the pro-survival gene Bcl-2 via suppressing reactive oxygen species/mitogen-activated protein kinase 1/3 pathway.

Conclusions

Our findings indicate that an inflammatory microenvironment-induced autophagy promotes apoptosis of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel approach to improve MSC survival during immunotherapy.

【 授权许可】

   
2015 Dang et al.

【 预 览 】
附件列表
Files Size Format View
20160123100138257.pdf 1434KB PDF download
Fig. 5. 58KB Image download
Fig. 4. 49KB Image download
Fig. 3. 59KB Image download
Fig. 2. 58KB Image download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Xiao E, Yang HQ, Gan YH, Duan DH, He LH, Guo Y, et al.: Brief reports: TRPM7 Senses mechanical stimulation inducing osteogenesis in human bone marrow mesenchymal stem cells. Stem Cells. 2015, 33:615-621.
  • [2]Uccelli A, Moretta L, Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008, 8:726-736.
  • [3]Singer NG, Caplan AI: Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011, 6:457-478.
  • [4]Le Blanc K, Mougiakakos D: Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012, 12:383-396.
  • [5]Bernardo ME, Fibbe WE: Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013, 13:392-402.
  • [6]Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005, 105:1815-1822.
  • [7]Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, et al.: Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 2009, 57:1192-1203.
  • [8]Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G: Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007, 56:1175-1186.
  • [9]Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, et al.: Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha. Nat Med. 2011, 17:1594-1601.
  • [10]Németh K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, et al.: Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2008, 15:42-49.
  • [11]Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G: How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012, 33:136-143.
  • [12]Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al.: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008, 2:141-150.
  • [13]Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L: Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006, 107:1484-1490.
  • [14]Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, et al.: Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy. 2014, 10:1301-1315.
  • [15]Deutschman CS, Tracey KJ: Sepsis: current dogma and new perspectives. Immunity. 2014, 40:463-475.
  • [16]Dejager L, Pinheiro I, Dejonckheere E, Libert C: Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011, 19:198-208.
  • [17]Siempos II, Lam HC, Ding Y, Choi ME, Choi AM, Ryter SW: Cecal ligation and puncture-induced sepsis as a model to study autophagy in mice. J Vis Exp 2014.
  • [18]dos Santos CC, Murthy S, Hu P, Shan Y, Haitsma JJ, Mei SH, et al.: Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis. Am J Pathol. 2012, 181:1681-1692.
  • [19]Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, et al.: Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol. 2012, 302:L1003-L1013.
  • [20]Hall SR, Tsoyi K, Ith B, Padera RF Jr, Lederer JA, Wang Z, et al.: Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils. Stem Cells. 2013, 31:397-407.
  • [21]Totsuka N, Kim YG, Kanemaru K, Niizuma K, Umemoto E, Nagai K, et al.: Toll-like receptor 4 and MAIR-II/CLM-4/LMIR2 immunoreceptor regulate VLA-4-mediated inflammatory monocyte migration. Nat Commun. 2014, 5:4710.
  • [22]Fang G, Chang BS, Kim CN, Perkins C, Thompson CB, Bhalla KN: “Loop” domain is necessary for taxol-induced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis. Cancer Res. 1998, 58:3202-3208.
  • [23]Brinkkoetter PT, Olivier P, Wu JS, Henderson S, Krofft RD, Pippin JW, et al.: Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. J Clin Invest. 2009, 119:3089-3101.
  • [24]Balmanno K, Cook SJ: Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 2009, 16:368-377.
  • [25]Cai C, Teng L, Vu D, He JQ, Guo Y, Li Q, et al.: The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the ERK/Nrf2 signaling pathway and cytokine release. J Biol Chem. 2012, 287:33720-33732.
  • [26]Kusadasi N, Groeneveld AB: A perspective on mesenchymal stromal cell transplantation in the treatment of sepsis. Shock. 2013, 40:352-357.
  • [27]Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, et al.: Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 2011, 333:228-233.
  • [28]Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, et al.: Ambra1 regulates autophagy and development of the nervous system. Nature. 2007, 447:1121-1125.
  • [29]Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 2008, 451:1069-1075.
  • [30]Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al.: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006, 10:51-64.
  • [31]Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, et al.: Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004, 304:1500-1502.
  • [32]Azad MB, Chen Y, Gibson SB: Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal. 2009, 11:777-790.
  • [33]Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, et al.: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010, 285:22576-22591.
  • [34]Scherz-Shouval R, Elazar Z: Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011, 36:30-38.
  • [35]Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A: Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A. 2009, 106:2770-2775.
  • [36]Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, et al.: Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011, 208:519-533.
  • [37]Morgan MJ, Liu ZG: Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011, 21:103-115.
  • [38]Rygiel TP, Mertens AE, Strumane K, van der Kammen R, Collard JG: The Rac activator Tiam1 prevents keratinocyte apoptosis by controlling ROS-mediated ERK phosphorylation. J Cell Sci. 2008, 121:1183-1192.
  文献评价指标  
  下载次数:151次 浏览次数:157次