期刊论文详细信息
Retrovirology
Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome
Feng Gao8  Barton F Haynes8  Beatrice H Hahn5  George M Shaw5  Alan S Perelson9  Andrew McMichael1  Guido Ferrari7  M Anthony Moody6  Joy Pickeral7  Josh Eudailey4  Mark S Drinker4  Bhavna Hora4  Anna Berg4  Michael KP Liu1  Nilu Goonetilleke1  Julie M Decker2  Katharine J Bar3  Shilpa S Iyer3  Hui Li3  Tanmoy Bhattacharya9  Fangping Cai4  Jeffrey W Pavlicek4  Hongshuo Song4 
[1] Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK;Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA;Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA;Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA;Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA;Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA;Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA;Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA;Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
关键词: Mathematical model;    Transmitted/founder virus;    Immune escape mutation;    Cytotoxic T lymphocytes;    Viral fitness;    Human immunodeficiency virus type I;   
Others  :  1209253
DOI  :  10.1186/1742-4690-9-89
 received in 2012-06-03, accepted in 2012-10-07,  发布年份 2012
PDF
【 摘 要 】

Background

A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method.

Results

The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region.

Conclusions

These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.

【 授权许可】

   
2012 Song et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602091742538.pdf 1437KB PDF download
Figure 8. 82KB Image download
Figure 7. 90KB Image download
Figure 6. 55KB Image download
Figure 5. 54KB Image download
Figure 4. 31KB Image download
Figure 3. 56KB Image download
Figure 2. 61KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Abraha A, Nankya IL, Gibson R, Demers K, Tebit DM, Johnston E, Katzenstein D, Siddiqui A, Herrera C, Fischetti L, et al.: CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 2009, 83:5592-5605.
  • [2]Arien KK, Troyer RM, Gali Y, Colebunders RL, Arts EJ, Vanham G: Replicative fitness of historical and recent HIV-1 isolates suggests HIV-1 attenuation over time. AIDS 2005, 19:1555-1564.
  • [3]Quinones-Mateu ME, Ball SC, Marozsan AJ, Torre VS, Albright JL, Vanham G, van Der Groen G, Colebunders RL, Arts EJ: A dual infection/competition assay shows a correlation between ex vivo human immunodeficiency virus type 1 fitness and disease progression. J Virol 2000, 74:9222-9233.
  • [4]Rodriguez MA, Ding M, Ratner D, Chen Y, Tripathy SP, Kulkarni SS, Chatterjee R, Tarwater PM, Gupta P: High replication fitness and transmission efficiency of HIV-1 subtype C from India: Implications for subtype C predominance. Virology 2009, 385:416-424.
  • [5]Shakirzyanova M, Ren W, Zhuang K, Tasca S, Cheng-Mayer C: Fitness disadvantage of transitional intermediates contributes to dynamic change in the infecting-virus population during coreceptor switch in R5 simian/human immunodeficiency virus-infected macaques. J Virol 2010, 84:12862-12871.
  • [6]Troyer RM, Collins KR, Abraha A, Fraundorf E, Moore DM, Krizan RW, Toossi Z, Colebunders RL, Jensen MA, Mullins JI, et al.: Changes in human immunodeficiency virus type 1 fitness and genetic diversity during disease progression. J Virol 2005, 79:9006-9018.
  • [7]Chopera DR, Woodman Z, Mlisana K, Mlotshwa M, Martin DP, Seoighe C, Treurnicht F, de Rosa DA, Hide W, Karim SA, et al.: Transmission of HIV-1 CTL escape variants provides HLA-mismatched recipients with a survival advantage. PLoS Pathog 2008, 4:e1000033.
  • [8]Crawford H, Lumm W, Leslie A, Schaefer M, Boeras D, Prado JG, Tang J, Farmer P, Ndung'u T, Lakhi S, et al.: Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J Exp Med 2009, 206:909-921.
  • [9]Goepfert PA, Lumm W, Farmer P, Matthews P, Prendergast A, Carlson JM, Derdeyn CA, Tang J, Kaslow RA, Bansal A, et al.: Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J Exp Med 2008, 205:1009-1017.
  • [10]Coffin JM: HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 1995, 267:483-489.
  • [11]Goonetilleke N, Liu MK, Salazar-Gonzalez JF, Ferrari G, Giorgi E, Ganusov VV, Keele BF, Learn GH, Turnbull EL, Salazar MG, et al.: The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med 2009, 206:1253-1272.
  • [12]Ganusov VV, Goonetilleke N, Liu MK, Ferrari G, Shaw GM, McMichael AJ, Borrow P, Korber BT, Perelson AS: Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J Virol 2011, 85:10518-10528.
  • [13]Troyer RM, McNevin J, Liu Y, Zhang SC, Krizan RW, Abraha A, Tebit DM, Zhao H, Avila S, Lobritz MA, et al.: Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response. PLoS Pathog 2009, 5:e1000365.
  • [14]Martinez-Picado J, Prado JG, Fry EE, Pfafferott K, Leslie A, Chetty S, Thobakgale C, Honeyborne I, Crawford H, Matthews P, et al.: Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol 2006, 80:3617-3623.
  • [15]Brockman MA, Schneidewind A, Lahaie M, Schmidt A, Miura T, Desouza I, Ryvkin F, Derdeyn CA, Allen S, Hunter E, et al.: Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A. J Virol 2007, 81:12608-12618.
  • [16]Miura T, Brockman MA, Schneidewind A, Lobritz M, Pereyra F, Rathod A, Block BL, Brumme ZL, Brumme CJ, Baker B, et al.: HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte [corrected] recognition. J Virol 2009, 83:2743-2755.
  • [17]Maree AF, Keulen W, Boucher CA, De Boer RJ: Estimating relative fitness in viral competition experiments. J Virol 2000, 74:11067-11072.
  • [18]Armstrong KL, Lee TH, Essex M: Replicative fitness costs of nonnucleoside reverse transcriptase inhibitor drug resistance mutations on HIV subtype C. Antimicrob Agents Chemother 2011, 55:2146-2153.
  • [19]Hu Z, Giguel F, Hatano H, Reid P, Lu J, Kuritzkes DR: Fitness comparison of thymidine analog resistance pathways in human immunodeficiency virus type 1. J Virol 2006, 80:7020-7027.
  • [20]Wu H, Huang Y, Dykes C, Liu D, Ma J, Perelson AS, Demeter LM: Modeling and estimation of replication fitness of human immunodeficiency virus type 1 in vitro experiments by using a growth competition assay. J Virol 2006, 80:2380-2389.
  • [21]Quinones-Mateu ME, Arts EJ: Fitness of drug resistant HIV-1: methodology and clinical implications. Drug Resist Updat 2002, 5:224-233.
  • [22]Croteau G, Doyon L, Thibeault D, McKercher G, Pilote L, Lamarre D: Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. J Virol 1997, 71:1089-1096.
  • [23]Martinez-Picado J, Savara AV, Shi L, Sutton L, D'Aquila RT: Fitness of human immunodeficiency virus type 1 protease inhibitor-selected single mutants. Virology 2000, 275:318-322.
  • [24]Levy DN, Aldrovandi GM, Kutsch O, Shaw GM: Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci USA 2004, 101:4204-4209.
  • [25]Zhuang J, Mukherjee S, Ron Y, Dougherty JP: High rate of genetic recombination in murine leukemia virus: implications for influencing proviral ploidy. J Virol 2006, 80:6706-6711.
  • [26]Dykes C, Wu H, Sims M, Holden-Wiltse J, Demeter LM: Human immunodeficiency virus type 1 protease inhibitor drug-resistant mutants give discordant results when compared in single-cycle and multiple-cycle fitness assays. J Clin Microbiol 2010, 48:4035-4043.
  • [27]Kosalaraksa P, Kavlick MF, Maroun V, Le R, Mitsuya H: Comparative fitness of multi-dideoxynucleoside-resistant human immunodeficiency virus type 1 (HIV-1) in an In vitro competitive HIV-1 replication assay. J Virol 1999, 73:5356-5363.
  • [28]Cai F, Chen H, Hicks CB, Bartlett JA, Zhu J, Gao F: Detection of minor drug-resistant populations by parallel allele-specific sequencing. Nat Methods 2007, 4:123-125.
  • [29]Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM, Wang S, Baalwa J, Kraus MH, et al.: Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med 2009, 206:1273-1289.
  • [30]Wang D, Hicks CB, Goswami ND, Tafoya E, Ribeiro RM, Cai F, Perelson AS, Gao F: Evolution of Drug-Resistant Viral Populations during Interruption of Antiretroviral Therapy. J Virol 2011, 85:6403-6415.
  • [31]Liu M, Hawkins N, Ritchie A, Ganusov V, Whale V, Brackenridge S, Li H, Pavelick J, Cai F, Rose-Abrahams M, et al.: T cell immunodominance, breadth and epitope entropy are the major determinants of virus escape rate in acute HIV-1 infection. J Clin InvestIn press
  • [32]Crawford H, Prado JG, Leslie A, Hue S, Honeyborne I, Reddy S, van der Stok M, Mncube Z, Brander C, Rousseau C, et al.: Compensatory mutation partially restores fitness and delays reversion of escape mutation within the immunodominant HLA-B*5703-restricted Gag epitope in chronic human immunodeficiency virus type 1 infection. J Virol 2007, 81:8346-8351.
  • [33]Kelleher AD, Long C, Holmes EC, Allen RL, Wilson J, Conlon C, Workman C, Shaunak S, Olson K, Goulder P, et al.: Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J Exp Med 2001, 193:375-386.
  • [34]Dimitrov DS, Willey RL, Sato H, Chang LJ, Blumenthal R, Martin MA: Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 1993, 67:2182-2190.
  • [35]Bar KJ, Tsao C-y, Iyer S, Decker JM, Yang Y, Mao Y, Bonsignori M, Chen X, Hwang K-K, Montefiori DC, et al.: Early Appearance of Low-Titer Neutralizing Antibodies Selects for HIV-1 Escape. PLoS PathogSubmitted
  • [36]Gao F, Chen Y, Levy DN, Conway JA, Kepler TB, Hui H: Unselected mutations in the human immunodeficiency virus type 1 genome are mostly nonsynonymous and often deleterious. J Virol 2004, 78:2426-2433.
  • [37]Mansky LM, Temin HM: Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995, 69:5087-5094.
  • [38]Neher RA, Leitner T: Recombination rate and selection strength in HIV intra-patient evolution. PLoS Comput Biol 2010, 6:e1000660.
  • [39]Batorsky R, Kearney MF, Palmer SE, Maldarelli F, Rouzine IM, Coffin JM: Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection. Proc Natl Acad Sci U S A 2011, 108:5661-5666.
  • [40]Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, Feeney M, Tang Y, Holmes EC, Allen T, Prado JG, et al.: HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 2004, 10:282-289.
  • [41]Novitsky V, Wang R, Margolin L, Baca J, Moyo S, Musonda R, Essex M: Dynamics and timing of in vivo mutations at Gag residue 242 during primary HIV-1 subtype C infection. Virology 2010, 403:37-46.
  • [42]Schneidewind A, Tang Y, Brockman MA, Ryland EG, Dunkley-Thompson J, Steel-Duncan JC, St John MA, Conrad JA, Kalams SA, Noel F, et al.: Maternal transmission of human immunodeficiency virus escape mutations subverts HLA-B57 immunodominance but facilitates viral control in the haploidentical infant. J Virol 2009, 83:8616-8627.
  • [43]Robertson DL, Sharp PM, McCutchan FE, Hahn BH: Recombination in HIV-1. Nature 1995, 374:124-126.
  • [44]Jiang C, Parrish NF, Wilen CB, Li H, Chen Y, Pavlicek JW, Berg A, Lu X, Song H, Tilton JC, et al.: Primary Infection by a Human Immunodeficiency Virus with Atypical Coreceptor Tropism. J Virol 2011, 85:10669-10681.
  • [45]Liu J, Miller MD, Danovich RM, Vandergrift N, Cai F, Hicks CB, Hazuda DJ, Gao F: Analysis of low frequency mutations associated with drug-resistance to raltegravir before antiretroviral treatment. Antimicrob Agents Chemother 2011, 55:1114-1119.
  • [46]Nagylaki T: Introduction to Theoretical Population Genetics. Springer, Berlin; 1992.
  • [47]Layne SP, Merges MJ, Dembo M, Spouge JL, Conley SR, Moore JP, Raina JL, Renz H, Gelderblom HR, Nara PL: Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology 1992, 189:695-714.
  文献评价指标  
  下载次数:0次 浏览次数:11次