期刊论文详细信息
Virology Journal
A novel dengue virus detection method that couples DNAzyme and gold nanoparticle approaches
Malcolm J Fraser1  Tresa S Fraser1  Cheryl A Kucharski1  Velmurugan Balaraman1  James R Carter1 
[1] Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
关键词: Detection;    Arbovirus;    Gold;    Nanoparticles;    DNAzyme;    Flavivirus;    Dengue;   
Others  :  1149365
DOI  :  10.1186/1743-422X-10-201
 received in 2012-11-12, accepted in 2013-04-08,  发布年份 2013
PDF
【 摘 要 】

Background

Recent epidemics of dengue viruses (DENV) coupled with new outbreaks on the horizon have renewed the demand for novel detection methods that have the ability to identify this viral pathogen prior to the manifestation of symptoms. The ability to detect DENV in a timely manner is essential for rapid recovery from disease symptoms. A modified lab-derived 10-23 DNAzyme tethered to gold nanoparticles provides a powerful tool for the detection of viruses, such as DENV.

Results

We examined the effectiveness of coupling DNAzyme (DDZ) activation to the salt-induced aggregation of gold nanoparticles (AuNP) to detect dengue virus (DENV) progeny in mosquito cells. A DNAzyme was designed to recognize the 5’ cyclization sequence (5’ CS) that is conserved among all DENV, and conjugated to AuNPs. DDZ-AuNP has demonstrated the ability to detect the genomic RNA of our model dengue strain, DENV-2 NGC, isolated from infected Aedes albopictus C6/36 cells. These targeting events lead to the rapid aggregation of AuNPs, resulting in a red to clear color transition of the reaction mixes, and thus positive detection of the DENV RNA genome. The inclusion of SDS in the reaction mixture permitted the detection of DENV directly from cell culture supernatants without additional sample processing. Specificity assays demonstrated detection is DENV-specific, while sensitivity assays confirm detection at levels of 1 × 101 TCID50 units. These results demonstrate DDZ-AuNP effectively detects DENV genomes in a sequence specific manner and at concentrations that are practical for field use.

Conclusions

We have developed an effective detection assay using DNAzyme catalysis coupled with AuNP aggregation for the detection of DENV genomes in a sequence specific manner. Full development of our novel DDZ-AuNP detection method will provide a practical, rapid, and low cost alternative for the detection of DENV in mosquito cells and tissues, and possibly infected patient serum, in a matter of minutes with little to no specialized training required.

【 授权许可】

   
2013 Carter et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405052824791.pdf 1407KB PDF download
Figure 8. 71KB Image download
Figure 7. 128KB Image download
Figure 6. 51KB Image download
Figure 5. 78KB Image download
Figure 4. 39KB Image download
Figure 3. 75KB Image download
Figure 2. 71KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]WHO: Dengue and dengue haemorrhagic fever, Fact sheet N°117. Geneva, Switzerland: WHO: Dengue and dengue haemorrhagic fever; 2012.
  • [2]Randolph SE, Rogers DJ: The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol 2010, 8:361-371.
  • [3]Rigau-Perez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam AV: Dengue and dengue haemorrhagic fever. Lancet 1998, 352:971-977.
  • [4]Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M: Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 2007, 7:319-327.
  • [5]Weaver SC, Reisen WK: Present and future arboviral threats. Antiviral Res 2010, 85:328-345.
  • [6]Clyde K, Kyle JL, Harris E: Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 2006, 80:11418-11431.
  • [7]Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M, Ayers T, Elm J, Tom T, Reiter P, Rigau-Perez JG, et al.: Dengue fever, Hawaii, 2001-2002. Emerg Infect Dis 2005, 11:742-749.
  • [8]Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JL, Fournier M, Trujillo AR, Burton R, Brunkard JM, Anaya-Lopez L, et al.: Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg 2008, 78:364-369.
  • [9]Adelman ZN, Blair CD, Carlson JO, Beaty BJ, Olson KE: Sindbis virus-induced silencing of dengue viruses in mosquitoes. Insect Mol Biol 2001, 10:265-273.
  • [10]Anez G, Heisey DA, Espina LM, Stramer SL, Rios M: Phylogenetic analysis of dengue virus types 1 and 4 circulating in Puerto Rico and Key west, Florida, during 2010 epidemics. Am J Trop Med Hyg 2012, 87:548-553.
  • [11]Adalja AA, Sell TK, Bouri N, Franco C: Lessons learned during dengue outbreaks in the United States, 2001-2011. Emerg Infect Dis 2012, 18:608-614.
  • [12]Ramos MM, Tomashek KM, Arguello DF, Luxemburger C, Quinones L, Lang J, Munoz-Jordan JL: Early clinical features of dengue infection in Puerto Rico. Trans R Soc Trop Med Hyg 2009, 103:878-884.
  • [13]Ramos MM, Arguello DF, Luxemburger C, Quinones L, Munoz JL, Beatty M, Lang J, Tomashek KM: Epidemiological and clinical observations on patients with dengue in Puerto Rico: results from the first year of enhanced surveillance–June 2005-May 2006. Am J Trop Med Hyg 2008, 79:123-127.
  • [14]Figueiredo LT: Dengue in Brazil. Rev Soc Bras Med Trop 2012, 45:285.
  • [15]Rai MA: Epidemic: Control of dengue fever in Pakistan. Nature 2011, 479:41.
  • [16]Roberts L: Mosquitoes and disease. Science 2002, 298:82-83.
  • [17]Qi RF, Zhang L, Chi CW: Biological characteristics of dengue virus and potential targets for drug design. Acta Biochim Biophys Sin (Shanghai) 2008, 40:91-101.
  • [18]Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV: Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 1992, 30:545-551.
  • [19]Gubler DJ: Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998, 11:480-496.
  • [20]Guzman MG, Kouri G: Advances in dengue diagnosis. Clin Diagn Lab Immunol 1996, 3:621-627.
  • [21]World Health Organization (WHO) and the Special Programme for Research and Training in Tropical Diseases: Dengue: guidelines for diagnosis, treatment, and Training in Tropical Diseases: prevention and control. New edition. France; 2009.
  • [22]de Oliveira PC, Pavoni DP, Queiroz MH, de Borba L, Goldenberg S, dos Santos CN, Krieger MA: Dengue virus infections: comparison of methods for diagnosing the acute disease. J Clin Virol 2005, 32:272-277.
  • [23]Tripathi NK, Shrivastava A, Dash PK, Jana AM: Detection of dengue virus. Meth Mol Biol 2010, 665:51-64.
  • [24]Shu PY, Huang JH: Current advances in dengue diagnosis. Clin Diagn Lab Immunol 2004, 11:642-650.
  • [25]Jost H, Bialonski A, Storch V, Gunther S, Becker N, Schmidt-Chanasit J: Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany. J Clin Microbiol 2010, 48:1900-1903.
  • [26]Czajka C, Becker N, Poppert S, Jost H, Schmidt-Chanasit J, Kruger A: Molecular detection of Setaria tundra (Nematoda: Filarioidea) and an unidentified filarial species in mosquitoes in Germany. Parasit Vectors 2012, 5:14. BioMed Central Full Text
  • [27]Chisenhall DM, Vitek CJ, Richards SL, Mores CN: A method to increase efficiency in testing pooled field-collected mosquitoes. J Am Mosq Control Assoc 2008, 24:311-314.
  • [28]Ferapontova EE, Gothelf KV: Effect of serum on an RNA aptamer-based electrochemical sensor for theophylline. Langmuir 2009, 25:4279-4283.
  • [29]Zimmermann GR, Wick CL, Shields TP, Jenison RD, Pardi A: Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 2000, 6:659-667.
  • [30]Ogawa A, Maeda M: Simple and rapid colorimetric detection of cofactors of aptazymes using noncrosslinking gold nanoparticle aggregation. Bioorg Med Chem Lett 2008, 18:6517-6520.
  • [31]Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C: Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 2011, 415:175-181.
  • [32]Englebienne P: Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 1998, 123:1599-1603.
  • [33]Geyer CR, Sen D: Lanthanide probes for a phosphodiester-cleaving, lead-dependent, DNAzyme. J Mol Biol 1998, 275:483-489.
  • [34]Cieslak M, Szymanski J, Adamiak RW, Cierniewski CS: Structural rearrangements of the 10-23 DNAzyme to beta 3 integrin subunit mRNA induced by cations and their relations to the catalytic activity. J Biol Chem 2003, 278:47987-47996.
  • [35]Kim HK, Liu J, Li J, Nagraj N, Li M, Pavot CM, Lu Y: Metal-dependent global folding and activity of the 8-17 DNAzyme studied by fluorescence resonance energy transfer. J Am Chem Soc 2007, 129:6896-6902.
  • [36]Cairns MJ, King A, Sun LQ: Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites. Nucleic Acids Res 2003, 31:2883-2889.
  • [37]Geyer CR, Sen D: Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem Biol 1997, 4:579-593.
  • [38]Wieland M, Berschneider B, Erlacher MD, Hartig JS: Aptazyme-mediated regulation of 16S ribosomal RNA. Chem Biol 2010, 17:236-242.
  • [39]Rueda D, Walter NG: Fluorescent energy transfer readout of an aptazyme-based biosensor. Meth Mol Biol 2006, 335:289-310.
  • [40]Thompson KM, Syrett HA, Knudsen SM, Ellington AD: Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2002, 2:21. BioMed Central Full Text
  • [41]Auslander S, Ketzer P, Hartig JS: A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol Biosyst 2010, 6:807-814.
  • [42]de Silva C, Walter NG: Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme. RNA 2009, 15:76-84.
  • [43]Knudsen SM, Lee J, Ellington AD, Savran CA: Ribozyme-mediated signal augmentation on a mass-sensitive biosensor. J Am Chem Soc 2006, 128:15936-15937.
  • [44]Hall B, Hesselberth JR, Ellington AD: Computational selection of nucleic acid biosensors via a slip structure model. Biosens Bioelectron 2007, 22:1939-1947.
  • [45]Cho S, Kim JE, Lee BR, Kim JH, Kim BG: Bis-aptazyme sensors for hepatitis C virus replicase and helicase without blank signal. Nucleic Acids Res 2005, 33:e177.
  • [46]Santoro SW, Joyce GF: A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 1997, 94:4262-4266.
  • [47]Baum DA, Silverman SK: Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci 2008, 65:2156-2174.
  • [48]Alvarez DE, De Lella Ezcurra AL, Fucito S, Gamarnik AV: Role of RNA structures present at the 3’UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 2005, 339:200-212.
  • [49]Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV: Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 2005, 79:6631-6643.
  • [50]Cao X, Ye Y, Liu S: Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 2010, 417:1-16.
  • [51]Ogawa A, Maeda M: Easy design of logic gates based on aptazymes and noncrosslinking gold nanoparticle aggregation. Chem Commun (Camb) 2009, 21:4666-4668.
  • [52]Sato K, Hosokawa K, Maeda M: Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions. Nucleic Acids Res 2005, 33:e4.
  • [53]Carter JR, Keith JH, Barde PV, Fraser TS, Fraser MJ Jr: Targeting of highly conserved dengue virus sequences with anti-dengue virus trans-splicing group I introns. BMC Mol Biol 2010, 11:84. BioMed Central Full Text
  • [54]Alvarez DE, Filomatori CV, Gamarnik AV: Functional analysis of dengue virus cyclization sequences located at the 5’ and 3’UTRs. Virology 2008, 375:223-235.
  • [55]Sato K, Onoguchi M, Sato Y, Hosokawa K, Maeda M: Non-cross-linking gold nanoparticle aggregation for sensitive detection of single-nucleotide polymorphisms: optimization of the particle diameter. Anal Biochem 2006, 350:162-164.
  • [56]Sato K, Hosokawa K, Maeda M: Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 2003, 125:8102-8103.
  • [57]Sato K, Sawayanagi M, Hosokawa K, Maeda M: Single-base mutation detection using neutravidin-modified polystyrene nanoparticle aggregation. Anal Sci 2004, 20:893-894.
  • [58]Ogawa A: RNA aptazyme-tethered large gold nanoparticles for on-the-spot sensing of the aptazyme ligand. Bioorg Med Chem Lett 2011, 21:155-159.
  • [59]Cao YC, Jin R, Mirkin CA: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297:1536-1540.
  • [60]Weill L, Louis D, Sargueil B: Selection and evolution of NTP-specific aptamers. Nucleic Acids Res 2004, 32:5045-5058.
  • [61]Peeling RW, Artsob H, Pelegrino JL, Buchy P, Cardosa MJ, Devi S, Enria DA, Farrar J, Gubler DJ, Guzman MG, et al.: Evaluation of diagnostic tests: dengue. Nat Rev Microbiol 2010, 8:S30-S38.
  • [62]Becker R, Helenius A, Simons K: Solubilization of the semliki forest virus membrane with sodium dodecyl sulfate. Biochemistry 1975, 14:1835-1841.
  • [63]Caron M, Paupy C, Grard G, Becquart P, Mombo I, Nso BB, Kassa Kassa F, Nkoghe D, Leroy EM: Recent introduction and rapid dissemination of chikungunya virus and dengue virus serotype 2 associated with human and mosquito coinfections in Gabon, central Africa. Clin Infect Dis 2012, 55:e45-e53.
  • [64]Taraphdar D, Sarkar A, Mukhopadhyay BB, Chatterjee S: A comparative study of clinical features between monotypic and dual infection cases with Chikungunya virus and dengue virus in West Bengal, India. Am J Trop Med Hyg 2012, 86:720-723.
  • [65]Kalawat U, Sharma KK, Reddy SG: Prevalence of dengue and chickungunya fever and their co-infection. Indian J Pathol Microbiol 2012, 54:844-846.
  • [66]Nawtaisong P, Keith J, Fraser T, Balaraman V, Kolokoltsov A, Davey RA, Higgs S, Mohammed A, Rongsriyam Y, Komalamisra N, Fraser MJ Jr: Effective suppression of dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome. Virol J 2009, 6:73. BioMed Central Full Text
  • [67]Reed W, Carroll J, Agramonte A, Lazear JW: The etiology of yellow fever-a preliminary note. Publ Health Pap Rep 1900, 26:37-53.
  • [68]Tejada E: Yellow fever and the Indiana connection. An historical note about Dr. Walter Reed (1851-1902). Indiana Med 1985, 78:906-907.
  • [69]Kuwayama M, Ito M, Takao S, Shimazu Y, Fukuda S, Miyazaki K, Kurane I, Takasaki T: Japanese encephalitis virus in meningitis patients, Japan. Emerg Infect Dis 2005, 11:471-473.
  • [70]Macnamara FN: Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 1954, 48:139-145.
  • [71]Marchette NJ, Garcia R, Rudnick A: Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 1969, 18:411-415.
  • [72]Liu Y, Wu Z, Zhou G, He Z, Zhou X, Shen A, Hu J: Simple, rapid, homogeneous oligonucleotides colorimetric detection based on non-aggregated gold nanoparticles. Chem Commun (Camb) 2012, 48:3164-3166.
  • [73]Bai X, Shao C, Han X, Li Y, Guan Y, Deng Z: Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay: toward a generalized sensitivity-enhancing strategy. Biosens Bioelectron 2010, 25:1984-1988.
  • [74]Cairns MJ, Hopkins TM, Witherington C, Sun LQ: The influence of arm length asymmetry and base substitution on the activity of the 10-23 DNA enzyme. Antisense Nucleic Acid Drug Dev 2000, 10:323-332.
  • [75]Santoro SW, Joyce GF: Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 1998, 37:13330-13342.
  • [76]Williams DHaF I: Spectroscopic Methods in Organic Chemistry. 5th edition. Blacklick, Ohio, U.S.A: Mc Graw-Hill; 1995.
  • [77]Aaskov J, Buzacott K, Thu HM, Lowry K, Holmes EC: Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 2006, 311:236-238.
  • [78]Li D, Lott WB, Lowry K, Jones A, Thu HM, Aaskov J: Defective interfering viral particles in acute dengue infections. PLoS One 2011, 6:e19447.
  • [79]Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A: Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 2000, 181:2-9.
  • [80]Kabra SK, Jain Y, Singhal T, Ratageri VH: Dengue hemorrhagic fever: clinical manifestations and management. Indian J Pediatr 1999, 66:93-101.
  • [81]Tricou V, Vu HT, Quynh NV, Nguyen CV, Tran HT, Farrar J, Wills B, Simmons CP: Comparison of two dengue NS1 rapid tests for sensitivity, specificity and relationship to viraemia and antibody responses. BMC Infect Dis 2010, 10:142. BioMed Central Full Text
  • [82]Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN: Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One 2012, 7:e40401.
  • [83]Liu J, Lu Y: Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 2006, 1:246-252.
  • [84]Plante K, Wang E, Partidos CD, Weger J, Gorchakov R, Tsetsarkin K, Borland EM, Powers AM, Seymour R, Stinchcomb DT, et al.: Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog 2011, 7:e1002142.
  • [85]Li Y, Sen D: Toward an efficient DNAzyme. Biochemistry 1997, 36:5589-5599.
  文献评价指标  
  下载次数:0次 浏览次数:20次