期刊论文详细信息
BMC Pulmonary Medicine
Nanoparticle uptake by airway phagocytes after fungal spore challenge in murine allergic asthma and chronic bronchitis
Marcus A Mall3  Harald Renz2  Holger Garn1  Lisa Künzi2  Sylvie Eigeldinger-Berthou2  Melanie L Conrad4  Christoph Wigge2  Marianne Geiser2 
[1] Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany;Institute of Anatomy, University of Bern, Bern, Switzerland;Department of Translational Pulmonology, Translational Lung Research Center, Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany;Department of Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
关键词: Phagocytosis;    Nanoparticles;    Mouse;    Macrophages;    Gold;    Fungal spores;    Eosinophils;    COPD;    Clearance;    Asthma;   
Others  :  866248
DOI  :  10.1186/1471-2466-14-116
 received in 2013-09-27, accepted in 2014-07-10,  发布年份 2014
PDF
【 摘 要 】

Background

In healthy lungs, deposited micrometer-sized particles are efficiently phagocytosed by macrophages present on airway surfaces; however, uptake of nanoparticles (NP) by macrophages appears less effective and is largely unstudied in lung disease. Using mouse models of allergic asthma and chronic obstructive pulmonary disease (COPD), we investigated NP uptake after challenge with common biogenic ambient air microparticles.

Methods

Bronchoalveolar lavage (BAL) cells from diseased mice (allergic asthma: ovalbumin [OVA] sensitized and COPD: Scnn1b-transgenic [Tg]) and their respective healthy controls were exposed ex vivo first to 3-μm fungal spores of Calvatia excipuliformis and then to 20-nm gold (Au) NP. Electron microscopic imaging was performed and NP uptake was assessed by quantitative morphometry.

Results

Macrophages from diseased mice were significantly larger compared to controls in OVA-allergic versus sham controls and in Scnn1b-Tg versus wild type (WT) mice. The percentage of macrophages containing AuNP tended to be lower in Scnn1b-Tg than in WT mice. In all animal groups, fungal spores were localized in macrophage phagosomes, the membrane tightly surrounding the spore, whilst AuNP were found in vesicles largely exceeding NP size, co-localized in spore phagosomes and occasionally, in the cytoplasm. AuNP in vesicles were located close to the membrane. In BAL from OVA-allergic mice, 13.9 ± 8.3% of all eosinophils contained AuNP in vesicles exceeding NP size and close to the membrane.

Conclusions

Overall, AuNP uptake by BAL macrophages occurred mainly by co-uptake together with other material, including micrometer-sized ambient air particles like fungal spores. The lower percentage of NP containing macrophages in BAL from Scnn1b-Tg mice points to a change in the macrophage population from a highly to a less phagocytic phenotype. This likely contributes to inefficient macrophage clearance of NP in lung disease. Finally, the AuNP containing eosinophils in OVA-allergic mice show that other inflammatory cells present on airway surfaces may substantially contribute to NP uptake.

【 授权许可】

   
2014 Geiser et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727045547764.pdf 2682KB PDF download
112KB Image download
94KB Image download
159KB Image download
137KB Image download
112KB Image download
104KB Image download
【 图 表 】

【 参考文献 】
  • [1]Anderson JO, Thundiyil JG, Stolbach A: Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 2011, 8:166-175.
  • [2]Ruckerl R, Schneider A, Breitner S, Cyrys J, Peters A: Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol 2011, 23(10):555-592.
  • [3]Rubin BK: Air and soul: the science and application of aerosol therapy. Resp Care 2010, 55(7):911-921.
  • [4]Gwinn MR, Vallyathan V: Nanoparticles: health effects–pros and cons. Environ Health Perspect 2006, 114:1818-1825.
  • [5]The European Commission: Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union 2011. 2011/696/EU. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF webcite
  • [6]Brandenberger C, Rothen-Rutishauser B, Muhlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG: Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 2010, 242:56-65.
  • [7]Geiser M, Kreyling WG: Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 2010, 7:2.
  • [8]Wichmann HE, Peters A: Epidemiological evidence of the effects of ultrafine particle exposure. Philos Trans R Soc London A 2000, 3582:751-2769.
  • [9]Geiser M: Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 2010, 23(4):207-217.
  • [10]Geiser M: Morphological aspects of particle uptake by lung phagocytes. Microsc Res Tech 2002, 57(6):512-522.
  • [11]Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W: The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 2008, 38(3):371-376.
  • [12]Fanta CH: Asthma N Engl J Med. 2009, 360(10):1002-1014.
  • [13]Ferrara A: Chronic obstructive pulmonary disease. Radiol Technol 2011, 82(3):245-263.
  • [14]Fitzpatrick AM, Holguin F, Teague WG, Brown LA: Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. J Allergy Clin Immunol 2008, 121(6):1372-1378. 1378
  • [15]Careau E, Proulx LI, Pouliot P, Spahr A, Turmel V, Bissonnette EY: Antigen sensitization modulates alveolar macrophage functions in an asthma model. Am J Physiol Lung Cell Mol Physiol 2006, 290(5):L871-L879.
  • [16]Lay JC, Alexis NE, Zeman KL, Peden DB, Bennett WD: In vivo uptake of inhaled particles by airway phagocytes is enhanced in patients with mild asthma compared with normal volunteers. Thorax 2009, 64(4):313-320.
  • [17]Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN: Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2007, 37(6):748-755.
  • [18]Geiser M, Quaile O, Wenk A, Wigge C, Eigeldinger-Berthou S, Hirn S, Schäffler M, Schleh C, Möller W, Mall MA, Kreyling WG: Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol 2013, 10:19.
  • [19]Douwes J, Thorne P, Heederik D: Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 2003, 47(3):187-200.
  • [20]Atkinson RW, Strachan DP, Anderson HR, Hajat S, Emberlin J: Temporal associations between daily counts of fungal spores and asthma exacerbations. Occup Environ Med 2006, 63(9):580-590.
  • [21]Chen BY, Chao HJ, Chan CC, Lee CT, Wu HP, Cheng TJ, Chen CC, Guo YL: Effects of ambient particulate matter and fungal spores on lung function in schoolchildren. Pediatrics 2011, 127(3):e690-e698.
  • [22]Spieksma FTM: Aerobiology of inhalatory allergen carriers. Allergol Immunopathol 1995, 23:20-23.
  • [23]Adams KF, Hyde HA, Williams DA: Woodlands as a source of allergens, with special reference to basidiospores. Acta Allergol 1968, 23(3):265-281.
  • [24]Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U: High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 2009, 106(31):12814-12819.
  • [25]Levetin E, Horner WE, Lehrer SB: Morphology and allergenic properties of basidiospores from four Calvatia species. Mycologia 1992, 84/5:759-767.
  • [26]Geiser M, Leupin N, Maye I, Hof VI, Gehr P: Interaction of fungal spores with the lungs: distribution and retention of inhaled puffball (Calvatia excipuliformis) spores. J Allergy Clin Immunol 2000, 106(1):92-100.
  • [27]Conrad ML, Yildirim AO, Sonar SS, Kilic A, Sudowe S, Lunow M, Teich R, Renz H, Garn H: Comparison of adjuvant and adjuvant-free murine experimental asthma models. Clin Exp Allergy 2009, 39(8):1246-1254.
  • [28]Wielpütz MO, Eichinger M, Zhou Z, Leotta K, Hirtz S, Bartling SH, Semmler W, Kauczor HU, Puderbach M, Mall MA: In vivo monitoring of cystic fibrosis-like lung disease in mice by volumetric computed tomography. Eur Respir J 2011, 38:1060-1070. doi:10.1183/09031936.00149810
  • [29]Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC: Increased airway epithelial Na + absorption produces cystic fibrosis-like lung disease in mice. Nat Med 2004, 10(5):487-493.
  • [30]Mall MA, Harkema JR, Trojanek JB, Treis D, Livraghi A, Schubert S, Zhou Z, Kreda SM, Tilley SL, Hudson EJ, O’Neal W, Boucher RC: Development of chronic bronchitis and emphysema in beta-epithelial Na + channel-overexpressing mice. Am J Respir Crit Care Med 2008, 177(7):730-742.
  • [31]Gehrig S, Duerr J, Weitnauer M, Wagner CJ, Graeber SY, Schatterny J, Hirtz S, Belaaouaj A, Dalpke AH, Schultz C, Mall MA: Lack of neutrophil elastase reduces inflammation, mucus hypersecretion, and emphysema, but not mucus obstruction, in mice with cystic fibrosis-like lung disease. Am J Respir Crit Care Med 2014, 189(9):1082-1092.
  • [32]Trojanek JB, Cobos-Correa A, Diemer S, Kormann M, Schubert SC, Zhou-Suckow Z, Agrawal R, Duerr J, Wagner CJ, Schatterny J, Hirtz S, Sommerburg O, Hartl D, Schultz C, Mall MA: Airway mucus obstruction triggers macrophage activation and MMP12-dependent emphysema. Am J Respir Cell Mol Biol 2014. doi:10.1165/rcmb.2013-0407OC [Epub ahead of print])
  • [33]Zhou Z, Duerr J, Johannesson B, Schubert SC, Treis D, Harm M, Graeber SY, Dalpke A, Schultz C, Mall MA: The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J Cyst Fibros 2011, 10(Suppl 2):S172-S182.
  • [34]Geiser M, Schürch S, Gehr P: Influence of surface chemistry and topography of particles on their immersion into the lung’s surface-lining layer. J Appl Physiol 2003, 94:1793-1801.
  • [35]Sabuncu AC, Grubbs J, Qian S, Abdel-Fattah TM, Stacey MW, Beskok A: Probing nanoparticle interactions in cell culture media. Colloids Surf B: Biointerfaces 2012, 95:96-102.
  • [36]Baumeister W: Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 2002, 12(5):679-684.
  • [37]Alrifai M, Marsh LM, Dicke T, Kılıç A, Conrad ML, Renz H, Garn H: Compartmental and temporal dynamics of chronic inflammation and airway remodeling in a chronic asthma mouse model. PLoS One 2014, 9(1):e8583.
  • [38]Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, Bo T, Napier ME, Ting JPY, DeSimone JME, Bear J: Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest 2013, 123(7):3061-3073.
  • [39]Cohn ZA: Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol 1978, 121(3):813-816.
  • [40]Rimai DS, Quesnel DJ, Busnaia AA: The adhesion of dry particles in the nanometer to micrometer-size range. Colloids Surf A 2000, 165:3-10.
  • [41]Rejman J, Oberle V, Zuhorn IS, Hoekstra D: Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004, 377(Pt 1):159-169.
  • [42]Conner SD, Schmid SL: Regulated portals of entry into the cell. Nature 2003, 422(6927):37-44.
  • [43]Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P: Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005, 113(11):1555-1560.
  • [44]Takenaka S, Karg E, Kreyling WG, Lentner B, Möller W, Behnke-Semmler M, Jennen L, Walch A, Michalke B, Schramel P, Heyder J, Schulz H: Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 2006, 18:733-740.
  • [45]Takenaka S, Möller W, Semmler-Behnke M, Karg E, Wenk A, Schmid O, Stoeger T, Jennen L, Aichler M, Walch A, Pokhrel S, Mädler L, Eickelberg O, Kreyling WG: Efficient internalization and intracellular translocation of inhaled gold nanoparticles in rat alveolar macrophages. Nanomedicine (Lond) 2012, 7:855-865.
  • [46]Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M: Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005, 21:10644-10654.
  • [47]Cline MJ, Hanifin J, Lehrer RI: Phagocytosis by human eosinophils. Blood 1968, 32(6):922-934.
  • [48]Litt M: Studies in experimental eosinophilia. VI. uptake of immune complexes by eosinophils. J Cell Biol 1964, 23:355-361.
  • [49]Komiyama A, Spicer SS: Microendocytosis in eosinophilic leukocytes. J Cell Biol 1975, 64(3):622-635.
  文献评价指标  
  下载次数:88次 浏览次数:35次