期刊论文详细信息
Radiation Oncology
In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines
Arnab Chakravarti3  Julia White4  Wei Meng3  Alexander Huebner3  Ahmed Ibrahim2  Bin Li3  David Peereboom1  James Perry3  Tim Lautenschlaeger3 
[1] Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA;Pharmaceutical Industries Division, National Research Center, Cairo, Dokki 12622, Egypt;Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
关键词: Radiation;    Brain metastasis;    Breast cancer;    Cilengitide;   
Others  :  1152664
DOI  :  10.1186/1748-717X-8-246
 received in 2013-08-06, accepted in 2013-10-18,  发布年份 2013
PDF
【 摘 要 】

Background

Brain metastasis from breast cancer poses a major clinical challenge. Integrins play a role in regulating adhesion, growth, motility, and survival, and have been shown to be critical for metastatic growth in the brain in preclinical models. Cilengitide, an αvβ3/αvβ5 integrin inhibitor, has previously been studied as an anti-cancer drug in various tumor types. Previous studies have shown additive effects of cilengitide and radiation in lung cancer and glioblastoma cell lines. The ability of cilengitide to enhance the effects of radiation was examined preclinically in the setting of breast cancer to assess its possible efficacy in the setting of brain metastasis from breast cancer.

Methods

Our panel of breast cells was composed of four cell lines: T-47D (ER/PR+, Her2-, luminal A), MCF-7 (ER/PR+, Her2-, luminal A), MDA-MB-231 (TNBC, basal B), MDA-MB-468 (TNBC, basal A). The presence of cilengitide targets, β3 and β5 integrin, was first determined. Cell detachment was determined by cell counting, cell proliferation was determined by MTS proliferation assay, and apoptosis was measured by Annexin V staining and flow cytometry. The efficacy of cilengitide treatment alone was analyzed, followed by assessment of combined cilengitide and radiation treatment. Integrin β3 knockdown was performed, followed by cilengitide and radiation treatment to test for incomplete target inhibition by cilengitide, in high β3 expressing cells.

Results

We observed that all cell lines examined expressed both β3 and β5 integrin and that cilengitide was able to induce cell detachment and reduced proliferation in our panel. Annexin V assays revealed that a portion of these effects was due to cilengitide-induced apoptosis. Combined treatment with cilengitide and radiation served to further reduce proliferation compared to either treatment alone. Following β3 integrin knockdown, radiosensitization in combination with cilengitide was observed in a previously non-responsive cell line (MDA-MB-231). Clonogenic assays suggested little radiosensitization effects of cilengitide.

Conclusions

Cilengitide appears to enhance radiation response in preclinical models of breast cancer. These data suggest that the combination of radiation therapy and cilengitide may prove to be effective where radiation is utilized for the treatment of gross disease in breast cancer, such as in the setting of brain metastasis.

【 授权许可】

   
2013 Lautenschlaeger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406204453494.pdf 2028KB PDF download
Figure 7. 44KB Image download
Figure 6. 41KB Image download
Figure 5. 63KB Image download
Figure 4. 78KB Image download
Figure 3. 58KB Image download
Figure 2. 58KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE: Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 2004, 22:2865-2872.
  • [2]Sharma M, Abraham J: CNS metastasis in primary breast cancer. Expert Rev Anticancer Ther 2007, 7:1561-1566.
  • [3]Sperduto PW, Kased N, Roberge D, Xu Z, Shanley R, Luo X, Sneed PK, Chao ST, Weil RJ, Suh J, Bhatt A, Jensen AW, Brown PD, Shih HA, Kirkpatrick J, Gaspar LE, Fiveash JB, Chiang V, Knisely JP, Sperduto CM, Lin N, Mehta M: Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 2012, 30:419-425.
  • [4]Desgrosellier JS, Cheresh DA: Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010, 10:9-22.
  • [5]Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE: Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 2008, 28:1703-1713.
  • [6]Sloan EK, Pouliot N, Stanley KL, Chia J, Moseley JM, Hards DK, Anderson RL: Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 2006, 8:R20. BioMed Central Full Text
  • [7]Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, Strasser JF, Villani R, Cheresh DA, Black PM: Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 2001, 49:380-389. discussion 390
  • [8]Adachi M, Taki T, Higashiyama M, Kohno N, Inufusa H, Miyake M: Significance of integrin alpha5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clin Cancer Res 2000, 6:96-101.
  • [9]Ria R, Vacca A, Ribatti D, Di Raimondo F, Merchionne F, Dammacco F: Alpha(v)beta(3) integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica 2002, 87:836-845.
  • [10]Cruet-Hennequart S, Maubant S, Luis J, Gauduchon P, Staedel C, Dedhar S: alpha(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 2003, 22:1688-1702.
  • [11]Lorger M, Krueger JS, O’Neal M, Staflin K, Felding-Habermann B: Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci U S A 2009, 106:10666-10671.
  • [12]Mas-Moruno C, Rechenmacher F, Kessler H: Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem 2010, 10:753-768.
  • [13]Oliveira-Ferrer L, Hauschild J, Fiedler W, Bokemeyer C, Nippgen J, Celik I, Schuch G: Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Cancer Res 2008, 27:86-9966-27-86.
  • [14]Bretschi M, Merz M, Komljenovic D, Berger MR, Semmler W, Bauerle T: Cilengitide inhibits metastatic bone colonization in a nude rat model. Oncol Rep 2011, 26:843-851.
  • [15]Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B: Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 2006, 65:1536-1543.
  • [16]Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL: Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 2002, 62:4263-4272.
  • [17]Steele JG, Dalton BA, Underwood PA, Smith GJ: Differences in adhesion to tissue culture plastic of clonally related transformed and control sublines from an epithelial cell strain. J Cell Sci 1991, 100(Pt 1):195-203.
  • [18]Keely PJ: Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia 2011, 16:205-219.
  • [19]Mendoza MC, Er EE, Blenis J: The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011, 36:320-328.
  • [20]McKenna WG, Muschel RJ, Gupta AK, Hahn SM, Bernhard EJ: The RAS signal transduction pathway and its role in radiation sensitivity. Oncogene 2003, 22:5866-5875.
  • [21]Mikkelsen T, Brodie C, Finniss S, Berens ME, Rennert JL, Nelson K, Lemke N, Brown SL, Hahn D, Neuteboom B, Goodman SL: Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency. Int J Cancer 2009, 124:2719-2727.
  • [22]Maurer GD, Tritschler I, Adams B, Tabatabai G, Wick W, Stupp R, Weller M: Cilengitide modulates attachment and viability of human glioma cells, but not sensitivity to irradiation or temozolomide in vitro. Neuro Oncol 2009, 11:747-756.
  • [23]Palmieri D, Smith QR, Lockman PR, Bronder J, Gril B, Chambers AF, Weil RJ, Steeg PS: Brain metastases of breast cancer. Breast Dis 2006, 26:139-147.
  文献评价指标  
  下载次数:2次 浏览次数:13次