期刊论文详细信息
Translational Neurodegeneration
Erythropoietin prevents PC12 cells from beta-amyloid-induced apoptosis via PI3K⁄Akt pathway
Chen Sheng-Di3  Hong Zhen1  Pan Jing1  Wang Zhi-Quan3  Yang Hong-Qi1  Sun Zhi-Kun2 
[1] Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China;Department of Neurology & Institute of Neurology, Henan Provincial Hospital, Zhengzhou City, Henan province 450000, People's Republic of China;Lab of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
关键词: Alzheimer's disease;    Erythropoietin;    Apoptosis;    Beta-amyloid peptide;   
Others  :  839018
DOI  :  10.1186/2047-9158-1-7
 received in 2011-12-31, accepted in 2012-02-29,  发布年份 2012
PDF
【 摘 要 】

Background

Several studies indicated that Erythropoietin (Epo) may provide remarkable neuroprotection in some neurological diseases. It also showed the significant decrease of Epo immunoreactivity in the cerebral cortex and hippocampus in aged rats, suggesting the role of Epo in the pathogenesis of age-related neurodegenerative diseases such as AD.

Methods

The protective effect of Epo was studied in differentiated PC12 cells treated with Abeta. The viability of the cells, the apoptosis of the cells and the level of Bax, Bcl-2, cleaved caspase-3 and cleaved PARP expression were detected by MTT, Hoechst 33258 staining and Western blotting respectively.

Results

20 μM Abeta (25-35) could induce a decreased viability and a increased apoptosis in PC12 cell in a time-dependent manner. However, 20 μM Abeta (35-25) had no effect on cell viability and apoptosis. Western blot analysis also showed that Abeta(25-35) treatment could decrease the expression of Bcl-2 (P < 0.05) and increase the expression of Bax (P < 0.05), Cleaved casapase-3 (P < 0.05), and Cleaved PARP (P < 0.05). The pretreatment of Epo could effectively reverse all the above changes induced by Abeta(25-35) (P < 0.05). Furthermore, the protective effect of Epo could be blocked by PI3K inhibitor LY294002 (P < 0.05).

Conclusions

Epo prevented cell injuries in PC12 cells exposed to the Abeta(25-35) and this effect may depend on the PI3K⁄Akt pathway. Our study provided an important evidence for the potential application of Epo in the therapy of Alzheimer's disease.

【 授权许可】

   
2012 Zhi-Kun et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140716032424351.pdf 2685KB PDF download
Figure 8. 20KB Image download
Figure 7. 37KB Image download
Figure 6. 95KB Image download
Figure 5. 36KB Image download
Figure 4. 53KB Image download
Figure 3. 20KB Image download
Figure 2. 40KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Yoshioka K: Molecular mechanism of neuronal cell death in Alzheimer's disease. Nippon Ronen Igakkai Zasshi 1998, 35(4):265-267.
  • [2]Cotman CW, Anderson AJ: A potential role for apoptosis in neurodegeneration and Alzheimer's disease. Mol Neurobiol 1995, 10(1):19-45.
  • [3]Cotman CW, Su JH: Mechanisms of neuronal death in Alzheimer's disease. Brain Pathol 1996, 6(4):493-506.
  • [4]Selkoe DJ: Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 1999, 399(6738 Suppl):A23-A31.
  • [5]Selkoe DJ: Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001, 81(2):741-766.
  • [6]Satou T, Cummings BJ, Cotman CW: Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer's disease brain increases with disease severity. Brain Res 1995, 697(1-2):35-43.
  • [7]Su JH, Deng G, Cotman CW: Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol 1997, 56(1):86-93.
  • [8]Lasne F, de Ceaurriz J: Recombinant erythropoietin in urine. Nature 2000, 405(6787):635.
  • [9]Digicaylioglu M, Lipton SA: Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 2001, 412(6847):641-647.
  • [10]Sinor AD, Greenberg DA: Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neurosci Lett 2000, 290(3):213-215.
  • [11]Sakanaka M, et al.: In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 1998, 95(8):4635-4640.
  • [12]Siren AL, et al.: Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 2001, 98(7):4044-4049.
  • [13]Ehrenreich H, et al.: Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 2007, 130(Pt 10):2577-2588.
  • [14]Chung YH, et al.: Age-related changes in erythropoietin immunoreactivity in the cerebral cortex and hippocampus of rats. Brain Res 2004, 1018(1):141-146.
  • [15]Yang HQ, et al.: New protein kinase C activator regulates amyloid precursor protein processing in vitro by increasing alpha-secretase activity. Eur J Neurosci 2007, 26(2):381-391.
  • [16]Sun ZK, et al.: Protective effects of erythropoietin on tau phosphorylation induced by beta-amyloid. J Neurosci Res 2008, 86(13):3018-3027.
  • [17]Sui X, Krantz SB, Zhao ZJ: Stem cell factor and erythropoietin inhibit apoptosis of human erythroid progenitor cells through different signalling pathways. Br J Haematol 2000, 110(1):63-70.
  • [18]Myklebust JH, et al.: Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol 2002, 30(9):990-1000.
  • [19]Bao H, et al.: Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood 1999, 93(11):3757-3773.
  • [20]Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002, 297(5580):353-356.
  • [21]Pereira C, et al.: Cell degeneration induced by amyloid-beta peptides: implications for Alzheimer's disease. J Mol Neurosci 2004, 23(1-2):97-104.
  • [22]Clementi ME, et al.: Alzheimer's amyloid beta-peptide (1-42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35. Biochem Biophys Res Commun 2006, 342(1):206-213.
  • [23]Juul SE, et al.: Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 1998, 43(1):40-49.
  • [24]Brines ML, et al.: Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000, 97(19):10526-10531.
  • [25]Martinez-Estrada OM, et al.: Erythropoietin protects the in vitro blood-brain barrier against VEGF-induced permeability. Eur J Neurosci 2003, 18(9):2538-2544.
  • [26]Konishi Y, et al.: Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res 1993, 609(1-2):29-35.
  • [27]Ehrenreich H, et al.: Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis 2004, 19(3-4):195-206.
  • [28]Lewczuk P, et al.: Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin. Neuroreport 2000, 11(16):3485-3488.
  • [29]Kubo T, Nishimura S, Oda T: Amyloid beta-peptide alters the distribution of early endosomes and inhibits phosphorylation of Akt in the presence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Brain Res Mol Brain Res 2002, 106(1-2):94-100.
  • [30]Iversen LL, et al.: The toxicity in vitro of beta-amyloid protein. Biochem J 1995, 311(Pt 1):1-16.
  • [31]Pike CJ, et al.: Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 1995, 64(1):253-265.
  • [32]Yankner BA, Duffy LK, Kirschner DA: Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990, 250(4978):279-282.
  • [33]D'Ursi AM, et al.: Solution structure of amyloid beta-peptide (25-35) in different media. J Med Chem 2004, 47(17):4231-4238.
  • [34]Giunta S, et al.: Transferrin neutralization of amyloid beta 25-35 cytotoxicity. Clin Chim Acta 2004, 350(1-2):129-136.
  • [35]Misiti F, et al.: Abeta(31-35) peptide induce apoptosis in PC 12 cells: contrast with Abeta(25-35) peptide and examination of underlying mechanisms. Neurochem Int 2005, 46(7):575-583.
  • [36]Kosuge Y, et al.: Comparative study of endoplasmic reticulum stress-induced neuronal death in rat cultured hippocampal and cerebellar granule neurons. Neurochem Int 2006, 49(3):285-293.
  • [37]Cummings MC, Winterford CM, Walker NI: Apoptosis. Am J Surg Pathol 1997, 21(1):88-101.
  • [38]Yang J, et al.: Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997, 275(5303):1129-1132.
  • [39]Tsujimoto Y: Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 1998, 3(11):697-707.
  • [40]Zhong LT, et al.: bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 1993, 90(10):4533-4537.
  • [41]Wolter KG, et al.: Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997, 139(5):1281-1292.
  • [42]Grutter MG: Caspases: key players in programmed cell death. Curr Opin Struct Biol 2000, 10(6):649-655.
  • [43]Wang XJ, Xu JX: Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP + -induced cytotoxicity. Neurosci Res 2005, 51(2):129-138.
  • [44]Lee MK, et al.: Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med 2007, 39(3):376-384.
  • [45]Stadelmann C, et al.: Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. Evidence for apoptotic cell death. Am J Pathol 1999, 155(5):1459-1466.
  • [46]Awasthi A, Matsunaga Y, Yamada T: Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp Neurol 2005, 196(2):282-289.
  • [47]Alvarez-Gonzalez R, et al.: Selective loss of poly(ADP-ribose) and the 85-kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylation-induced apoptosis of HeLa cells. J Biol Chem 1999, 274(45):32122-32126.
  • [48]Lee DH, Park T, Kim HW: Induction of apoptosis by disturbing mitochondrial-membrane potential and cleaving PARP in Jurkat T cells through treatment with acetoxyscirpenol mycotoxins. Biol Pharm Bull 2006, 29(4):648-654.
  • [49]Oliver FJ, et al.: Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 1998, 273(50):33533-33539.
  • [50]Damen JE, et al.: Tyrosine 343 in the erythropoietin receptor positively regulates erythropoietin-induced cell proliferation and Stat5 activation. Embo J 1995, 14(22):5557-5568.
  • [51]Miura O, et al.: Induction of tyrosine phosphorylation by the erythropoietin receptor correlates with mitogenesis. Mol Cell Biol 1991, 11(10):4895-4902.
  • [52]Joneja B, Wojchowski DM: Mitogenic signaling and inhibition of apoptosis via the erythropoietin receptor Box-1 domain. J Biol Chem 1997, 272(17):11176-11184.
  • [53]Sakamoto H, Kitamura T, Yoshimura A: Mitogen-activated protein kinase plays an essential role in the erythropoietin-dependent proliferation of CTLL-2 cells. J Biol Chem 2000, 275(46):35857-35862.
  • [54]Valk P, et al.: Enhancement of erythropoietin-stimulated cell proliferation by Anandamide correlates with increased activation of the mitogen-activated protein kinases ERK1 and ERK2. Hematol J 2000, 1(4):254-263.
  文献评价指标  
  下载次数:19次 浏览次数:6次