Retrovirology | |
HTLV-1 modulates the frequency and phenotype of FoxP3+CD4+ T cells in virus-infected individuals | |
Masao Matsuoka1  Kisato Nosaka4  Masanori Nakagawa5  Junko Tanabe1  Atae Utsunomiya2  Yorifumi Satou3  | |
[1] Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan;Department of Hematology, Imamura Bun-in Hospital, Kagoshima, 890-0064, Japan;Current address: Immunology Section, Division of Infectious Diseases, Department of Medicine, Imperial College, London, W2 1PG, UK;Department of Hematology, Kumamoto University School of Medicine, Kumamoto, 860-8556, Japan;Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan | |
关键词: HBZ; Tax; FoxP3; HAM/TSP; ATL; HTLV-1; | |
Others : 1209297 DOI : 10.1186/1742-4690-9-46 |
|
received in 2011-12-24, accepted in 2012-05-30, 发布年份 2012 | |
【 摘 要 】
Background
HTLV-1 utilizes CD4 T cells as the main host cell and maintains the proviral load via clonal proliferation of infected CD4+ T cells. Infection of CD4+ T cells by HTLV-1 is therefore thought to play a pivotal role in HTLV-1-related pathogenicity, including leukemia/lymphoma of CD4+ T cells and chronic inflammatory diseases. Recently, it has been reported that a proportion of HTLV-1 infected CD4+ T cells express FoxP3, a master molecule of regulatory T cells. However, crucial questions remain unanswered on the relationship between HTLV-1 infection and FoxP3 expression.
Results
To investigate the effect of HTLV-1 infection on CD4+ T-cell subsets, we used flow cytometry to analyze the T-cell phenotype and HTLV-1 infection in peripheral mononuclear cells (PBMCs) of four groups of subjects, including 23 HTLV-1-infected asymptomatic carriers (AC), 10 patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), 10 patients with adult T-cell leukemia (ATL), and 10 healthy donors. The frequency of FoxP3+ cells in CD4+ T cells in AC with high proviral load and patients with HAM/TSP or ATL was higher than that in uninfected individuals. The proviral load was positively correlated with the percentage of CD4+ T cells that were FoxP3+. The CD4+FoxP3+ T cells, themselves, were frequently infected with HTLV-1. We conclude that FoxP3+ T- cells are disproportionately infected with HTLV-1 during chronic infection. We next focused on PBMCs of HAM/TSP patients. The expression levels of the Treg associated molecules CTLA-4 and GITR were decreased in CD4+FoxP3+ T cells. Further we characterized FoxP3+CD4+ T-cell subsets by staining CD45RA and FoxP3, which revealed an increase in CD45RA−FoxP3low non-suppressive T-cells. These findings can reconcile the inflammatory phenotype of HAM/TSP with the observed increase in frequency of FoxP3+ cells. Finally, we analyzed ATL cells and observed not only a high frequency of FoxP3 expression but also wide variation in FoxP3 expression level among individual cases.
Conclusions
HTLV-1 infection induces an abnormal frequency and phenotype of FoxP3+CD4+ T cells.
【 授权许可】
2012 Satou et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150602094332801.pdf | 1690KB | download | |
Figure 3. | 121KB | Image | download |
Figure 5. | 30KB | Image | download |
Figure 4. | 36KB | Image | download |
20140826015430970.pdf | 602KB | download | |
Figure 2. | 22KB | Image | download |
Figure 1. | 32KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 4.
Figure 5.
Figure 3.
【 参考文献 】
- [1]Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H: Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 1977, 50:481-492.
- [2]Gallo RC: The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2005, 2:17. BioMed Central Full Text
- [3]Takatsuki K: Discovery of adult T-cell leukemia. Retrovirology 2005, 2:16. BioMed Central Full Text
- [4]Matsuoka M, Jeang KT: Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 2007, 7:270-280.
- [5]Gessain A, Barin F, Vernant JC, Gout O, Maurs L, Calender A, de The G: Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 1985, 2:407-410.
- [6]Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, Matsumoto M, Tara M: HTLV-I associated myelopathy, a new clinical entity. Lancet 1986, 1:1031-1032.
- [7]Sugimoto M, Nakashima H, Watanabe S, Uyama E, Tanaka F, Ando M, Araki S, Kawasaki S: T-lymphocyte alveolitis in HTLV-I-associated myelopathy. Lancet 1987, 2:1220.
- [8]Milagres SP, Sanches JA, Milagres AC, Valente NY: Histopathological and immunohistochemical assessment of acquired ichthyosis in patients with human T-cell lymphotropic virus type I-associated myelopathy. Br J Dermatol 2003, 149:776-781.
- [9]Etoh K, Tamiya S, Yamaguchi K, Okayama A, Tsubouchi H, Ideta T, Mueller N, Takatsuki K, Matsuoka M: Persistent clonal proliferation of human T-lymphotropic virus type I-infected cells in vivo. Cancer Res 1997, 57:4862-4867.
- [10]Cavrois M, Leclercq I, Gout O, Gessain A, Wain-Hobson S, Wattel E: Persistent oligoclonal expansion of human T-cell leukemia virus type 1-infected circulating cells in patients with Tropical spastic paraparesis/HTLV-1 associated myelopathy. Oncogene 1998, 17:77-82.
- [11]Yoshida M: Multiple viral strategies of htlv-1 for dysregulation of cell growth control. Annu Rev Immunol 2001, 19:475-496.
- [12]Giam CZ, Jeang KT: HTLV-1 Tax and adult T-cell leukemia. Front Biosci 2007, 12:1496-1507.
- [13]Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM: The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol 2002, 76:12813-12822.
- [14]Satou Y, Yasunaga J, Yoshida M, Matsuoka M: HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 2006, 103:720-725.
- [15]Usui T, Yanagihara K, Tsukasaki K, Murata K, Hasegawa H, Yamada Y, Kamihira S: Characteristic expression of HTLV-1 basic zipper factor (HBZ) transcripts in HTLV-1 provirus-positive cells. Retrovirology 2008, 5:34. BioMed Central Full Text
- [16]Arnold J, Zimmerman B, Li M, Lairmore MD, Green PL: Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 2008, 112:3788-3797.
- [17]Satou Y, Yasunaga J, Zhao T, Yoshida M, Miyazato P, Takai K, Shimizu K, Ohshima K, Green PL, Ohkura N, et al.: HTLV-1 bZIP factor induces T-Cell lymphoma and systemic inflammation in vivo. PLoS Pathog 2011, 7:e1001274.
- [18]Saito M, Matsuzaki T, Satou Y, Yasunaga J, Saito K, Arimura K, Matsuoka M, Ohara Y: In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology 2009, 6:19. BioMed Central Full Text
- [19]Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S: Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature 1990, 348:245-248.
- [20]Bangham CR, Osame M: Cellular immune response to HTLV-1. Oncogene 2005, 24:6035-6046.
- [21]Kannagi M, Harada S, Maruyama I, Inoko H, Igarashi H, Kuwashima G, Sato S, Morita M, Kidokoro M, Sugimoto M, et al.: Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int Immunol 1991, 3:761-767.
- [22]Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4:330-336.
- [23]Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299:1057-1061.
- [24]Khattri R, Cox T, Yasayko SA, Ramsdell F: An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003, 4:337-342.
- [25]Sakaguchi S, Yamaguchi T, Nomura T, Ono M: Regulatory T cells and immune tolerance. Cell 2008, 133:775-787.
- [26]Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S: CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008, 322:271-275.
- [27]Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, et al.: Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009, 30:899-911.
- [28]Richardson JH, Edwards AJ, Cruickshank JK, Rudge P, Dalgleish AG: In vivo cellular tropism of human T-cell leukemia virus type 1. J Virol 1990, 64:5682-5687.
- [29]Yasunaga J, Sakai T, Nosaka K, Etoh K, Tamiya S, Koga S, Mita S, Uchino M, Mitsuya H, Matsuoka M: Impaired production of naive T lymphocytes in human T-cell leukemia virus type I-infected individuals: its implications in the immunodeficient state. Blood 2001, 97:3177-3183.
- [30]Karube K, Ohshima K, Tsuchiya T, Yamaguchi T, Kawano R, Suzumiya J, Utsunomiya A, Harada M, Kikuchi M: Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol 2004, 126:81-84.
- [31]Abe M, Uchihashi K, Kazuto T, Osaka A, Yanagihara K, Tsukasaki K, Hasegawa H, Yamada Y, Kamihira S: Foxp3 expression on normal and leukemic CD4 + CD25+ T cells implicated in human T-cell leukemia virus type-1 is inconsistent with Treg cells. Eur J Haematol 2008, 81:209-217.
- [32]Hanon E, Hall S, Taylor GP, Saito M, Davis R, Tanaka Y, Usuku K, Osame M, Weber JN, Bangham CR: Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes. Blood 2000, 95:1386-1392.
- [33]Hattori T, Uchiyama T, Toibana T, Takatsuki K, Uchino H: Surface phenotype of Japanese adult T-cell leukemia cells characterized by monoclonal antibodies. Blood 1981, 58:645-647.
- [34]Aandahl EM, Michaelsson J, Moretto WJ, Hecht FM, Nixon DF: Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J Virol 2004, 78:2454-2459.
- [35]Cabrera R, Tu Z, Xu Y, Firpi RJ, Rosen HR, Liu C, Nelson DR: An immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in hepatitis C virus infection. Hepatology 2004, 40:1062-1071.
- [36]Toulza F, Heaps A, Tanaka Y, Taylor GP, Bangham CR: High frequency of CD4 + FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-1-specific CTL response. Blood 2008, 111:5047-5053.
- [37]Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MH, Taams LS, Beverley PC, Macallan DC, Akbar AN: Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 2006, 116:2423-2433.
- [38]Yamazaki S, Steinman RM: Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells. J Dermatol Sci 2009, 54:69-75.
- [39]Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW: Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 2008, 14:429-436.
- [40]Zhao T, Satou Y, Sugata K, Miyazato P, Green PL, Imamura T, Matsuoka M: HTLV-1 bZIP factor enhances TGF-beta signaling through p300 coactivator. Blood 2011, 118:1865-1876.
- [41]Hieshima K, Nagakubo D, Nakayama T, Shirakawa AK, Jin Z, Yoshie O: Tax-inducible production of CC chemokine ligand 22 by human T cell leukemia virus type 1 (HTLV-1)-infected T cells promotes preferential transmission of HTLV-1 to CCR4-expressing CD4+ T cells. J Immunol 2008, 180:931-939.
- [42]Toulza F, Nosaka K, Tanaka Y, Schioppa T, Balkwill F, Taylor GP, Bangham CR: Human T-lymphotropic virus type 1-induced CC chemokine ligand 22 maintains a high frequency of functional FoxP3+ regulatory T cells. J Immunol 2010, 185:183-189.
- [43]Tachibana N, Okayama A, Ishizaki J, Yokota T, Shishime E, Murai K, Shioiri S, Tsuda K, Essex M, Mueller N: Suppression of tuberculin skin reaction in healthy HTLV-I carriers from Japan. Int J Cancer 1988, 42:829-831.
- [44]Ramirez E, Cartier L, Rodriguez L, Alberti C, Valenzuela MA: In vivo fluctuation of Tax, Foxp3, CTLA-4, and GITR mRNA expression in CD4(+)CD25(+) T cells of patients with human T-lymphotropic virus type 1-associated myelopathy. Braz J Med Biol Res 2010, 43:1109-1115.
- [45]Yamano Y, Takenouchi N, Li HC, Tomaru U, Yao K, Grant CW, Maric DA, Jacobson S: Virus-induced dysfunction of CD4 + CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest 2005, 115:1361-1368.
- [46]Yamano Y, Araya N, Sato T, Utsunomiya A, Azakami K, Hasegawa D, Izumi T, Fujita H, Aratani S, Yagishita N, et al.: Abnormally high levels of virus-infected IFN-gamma + CCR4+ CD4+ CD25+ T cells in a retrovirus-associated neuroinflammatory disorder. PLoS One 2009, 4:e6517.
- [47]Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA: Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 2009, 10:1000-1007.
- [48]Jeffery KJ, Usuku K, Hall SE, Matsumoto W, Taylor GP, Procter J, Bunce M, Ogg GS, Welsh KI, Weber JN, et al.: HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl Acad Sci U S A 1999, 96:3848-3853.
- [49]Macnamara A, Rowan A, Hilburn S, Kadolsky U, Fujiwara H, Suemori K, Yasukawa M, Taylor G, Bangham CR, Asquith B: HLA class I binding of HBZ determines outcome in HTLV-1 infection. PLoS Pathog 2010, 6:e1001117.
- [50]Chen S, Ishii N, Ine S, Ikeda S, Fujimura T, Ndhlovu LC, Soroosh P, Tada K, Harigae H, Kameoka J, et al.: Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int Immunol 2006, 18:269-277.
- [51]Yano H, Ishida T, Inagaki A, Ishii T, Kusumoto S, Komatsu H, Iida S, Utsunomiya A, Ueda R: Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int J Cancer 2007, 120:2052-2057.
- [52]Shimauchi T, Kabashima K, Tokura Y: Adult T-cell leukemia/lymphoma cells from blood and skin tumors express cytotoxic T lymphocyte-associated antigen-4 and Foxp3 but lack suppressor activity toward autologous CD8+ T cells. Cancer Sci 2008, 99:98-106.
- [53]Toulza F, Nosaka K, Takiguchi M, Pagliuca T, Mitsuya H, Tanaka Y, Taylor GP, Bangham CR: FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia. Int J Cancer 2009, 125:2375-2382.
- [54]Mori K, Sabe H, Siomi H, Iino T, Tanaka A, Takeuchi K, Hirayoshi K, Hatanaka M: Expression of a provirus of human T cell leukaemia virus type I by DNA transfection. J Gen Virol 1987, 68(Pt 2):499-506.