期刊论文详细信息
Virology Journal
HTLV-1 proviral integration sites differ between asymptomatic carriers and patients with HAM/TSP
Charles RM Bangham1  Masao Matsuoka2  Becca Asquith1  Marjet Elemans1  Anat Melamed1  Daniel J Laydon1  Heather A Niederer1 
[1] Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK;Institute for Viral Research, Kyoto University, Kyoto 606-8507, Japan
关键词: CD8+ T cell;    Integration site;    HTLV-1-associated myelopathy/tropical spastic paraparesis;    HAM/TSP;    HTLV-1 basic leucine zipper factor;    HBZ;    Human T cell lymphotropic virus-type 1;    HTLV-1;   
Others  :  1148408
DOI  :  10.1186/1743-422X-11-172
 received in 2014-06-11, accepted in 2014-09-10,  发布年份 2014
PDF
【 摘 要 】

Background

HTLV-1 causes proliferation of clonal populations of infected T cells in vivo, each clone defined by a unique proviral integration site in the host genome. The proviral load is strongly correlated with odds of the inflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is evidence that asymptomatic HTLV-1 carriers (ACs) have a more effective CD8 + T cell response, including a higher frequency of HLA class I alleles able to present peptides from a regulatory protein of HTLV-1, HBZ. We have previously shown that specific features of the host genome flanking the proviral integration site favour clone survival and spontaneous expression of the viral transactivator protein Tax in naturally infected PBMCs ex vivo. However, the previous studies were not designed or powered to detect differences in integration site characteristics between ACs and HAM/TSP patients. Here, we tested the hypothesis that the genomic environment of the provirus differs systematically between ACs and HAM/TSP patients, and between individuals with strong or weak HBZ presentation.

Methods

We used our recently described high-throughput protocol to map and quantify integration sites in 95 HAM/TSP patients and 68 ACs from Kagoshima, Japan, and 75 ACs from Kumamoto, Japan. Individuals with 2 or more HLA class I alleles predicted to bind HBZ peptides were classified ‘strong’ HBZ binders; the remainder were classified ‘weak binders’.

Results

The abundance of HTLV-1-infected T cell clones in vivo was correlated with proviral integration in genes and in areas with epigenetic marks associated with active regulatory elements. In clones of equivalent abundance, integration sites in genes and active regions were significantly more frequent in ACs than patients with HAM/TSP, irrespective of HBZ binding and proviral load. Integration sites in genes were also more frequent in strong HBZ binders than weak HBZ binders.

Conclusion

Clonal abundance is correlated with integration in a transcriptionally active genomic region, and these regions may promote cell proliferation. A clone that reaches a given abundance in vivo is more likely to be integrated in a transcriptionally active region in individuals with a more effective anti-HTLV-1 immune response, such those who can present HBZ peptides or those who remain asymptomatic.

【 授权许可】

   
2014 Niederer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404140028354.pdf 666KB PDF download
Figure 2. 66KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Gessain A, Cassar O: Epidemiological Aspects and World Distribution of HTLV-1 Infection. Front Microbiol 2012, 3:388.
  • [2]Cook LB, Rowan AG, Melamed A, Taylor GP, Bangham CRM: HTLV-1-infected T cells contain a single integrated provirus in natural infection. Blood 2012, 120:3488-3490.
  • [3]Arnold J, Zimmerman B, Li M, Lairmore MD, Green PL: Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 2008, 112:3788-3797.
  • [4]Satou Y, Yasunaga J-i, Yoshida M, Matsuoka M: HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci 2006, 103:720-725.
  • [5]Boxus M, Willems L: Mechanisms of HTLV-1 persistence and transformation. Br J Cancer 2009, 101:1497-1501.
  • [6]Yamano Y, Sato T: Clinical pathophysiology of human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis. Front Microbiol 2012, 3:389.
  • [7]Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N: Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 1998, 4:586-593.
  • [8]Bangham CRM: CTL quality and the control of human retroviral infections. Eur J Immunol 2009, 39:1700-1712.
  • [9]Journo C, Mahieux R: HTLV-1 and innate immunity. Viruses 2011, 3:1374-1394.
  • [10]Jeffery KJ, Usuku K, Hall SE, Matsumoto W, Taylor GP, Procter J, Bunce M, Ogg GS, Welsh KI, Weber JN, Lloyd AL, Nowak MA, Nagai M, Kodama D, Izumo S, Osame M, Bangham CR: HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl Acad Sci U S A 1999, 96:3848-3853.
  • [11]Goon PKC, Biancardi A, Fast N, Igakura T, Hanon E, Mosley AJ, Asquith B, Gould KG, Marshall S, Taylor GP, Bangham CRM: Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy. J Infect Diseases 2004, 189:2294-2298.
  • [12]Kannagi M, Harada S, Maruyama I, Inoko H, Igarashi H, Kuwashima G, Sato S, Morita M, Kidokoro M, Sugimoto M: Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int Immunol 1991, 3:761-767.
  • [13]Niewiesk S, Daenke S, Parker CE, Taylor G, Weber J, Nightingale S, Bangham CR: Naturally occurring variants of human T-cell leukemia virus type I Tax protein impair its recognition by cytotoxic T lymphocytes and the transactivation function of Tax. J Virol 1995, 69:2649-2653.
  • [14]Koiwa T, Hamano-usami A, Ishida T, Okayama A, Yamaguchi K, Kamihira S, Koiwa T, Hamano-usami A, Ishida T, Okayama A, Yamaguchi K, Kamihira S, Watanabe T: 5′-Long Terminal Repeat-Selective CpG Methylation of Latent Human T-Cell Leukemia Virus Type 1 Provirus In Vitro and In Vivo. J Virol 2002, 76:9389-9397.
  • [15]Tamiya S, Matsuoka M, Etoh K, Watanabe T, Kamihira S, Yamaguchi K, Takatsuki K: Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia. Blood 1996, 88:3065-3073.
  • [16]Cook LB, Melamed A, Niederer H, Valganon M, Laydon D, Foroni L, Taylor GP, Matsuoka M, Bangham CRM: The role of HTLV-1 clonality, proviral structure and genomic integration site in adult T cell leukemia/lymphoma. Blood 2014. doi:10.1182/blood-2014-02-553602
  • [17]Furukawa Y, Kubota R, Tara M, Izumo S, Osame M: Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia. Blood 2001, 97:987-993.
  • [18]Asquith B, Mosley AJ, Barfield A, Marshall SEF, Heaps A, Goon P, Hanon E, Tanaka Y, Taylor GP, Bangham CRM: A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load. The Journal of General Virology 2005, 86:1515-1523.
  • [19]Sabouri AH, Usuku K, Hayashi D, Izumo S, Ohara Y, Osame M, Saito M: Impaired function of human T-lymphotropic virus type 1 (HTLV-1)-specific CD8+ T cells in HTLV-1-associated neurologic disease. Blood 2008, 112:2411-2420.
  • [20]Saito M, Matsuzaki T, Satou Y, Yasunaga J-I, Saito K, Arimura K, Matsuoka M, Ohara Y: In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology 2009, 6:19. BioMed Central Full Text
  • [21]Macnamara A, Rowan A, Hilburn S, Kadolsky U, Fujiwara H, Suemori K, Yasukawa M, Taylor G, Bangham CRM, Asquith B: HLA class I binding of HBZ determines outcome in HTLV-1 infection. PLoS Pathog 2010, 6:e1001117.
  • [22]Van Dooren S, Pybus OG, Salemi M, Liu H-F, Goubau P, Remondegui C, Talarmin A, Gotuzzo E, Alcantara LCJ, Galvão-Castro B, Vandamme A-M: The low evolutionary rate of human T-cell lymphotropic virus type-1 confirmed by analysis of vertical transmission chains. Mol Biol Evol 2004, 21:603-611.
  • [23]Melamed A, Laydon DJ, Gillet NA, Tanaka Y, Taylor GP, Bangham CRM: Genome-wide determinants of proviral targeting, clonal abundance and expression in natural HTLV-1 infection. PLoS Pathog 2013, 9:e1003271.
  • [24]Gillet NA, Malani N, Melamed A, Gormley N, Carter R, Bentley D, Berry C, Bushman FD, Taylor GP, Bangham CRM: The host genomic environment of the provirus determines the abundance of HTLV-1-infected T cell clones. Blood 2011, 117:3113-3122.
  • [25]Laydon DJ, Melamed A, Sim A, Gillet NA, Sim K, Darko S, Kroll JS, Douek DC, Price DA, Bangham CRM, Asquith B: Quantification of HTLV-1 clonality and TCR diversity. PLoS Comput Biol 2014, 10:e1003646.
  • [26]Meekings KN, Leipzig J, Bushman FD, Taylor GP, Bangham CRM: HTLV-1 integration into transcriptionally active genomic regions is associated with proviral expression and with HAM/TSP. PLoS Pathog 2008, 4:e1000027.
  • [27]Gillet NA, Gutiérrez G, Rodriguez SM, de Brogniez A, Renotte N, Alvarez I, Trono K, Willems L: Massive depletion of bovine leukemia virus proviral clones located in genomic transcriptionally active sites during primary infection. PLoS Pathog 2013, 9:e1003687.
  • [28]Gillet NA, Cook L, Laydon DJ, Hlela C, Verdonck K, Alvarez C, Gotuzzo E, Clark D, Farre L, Bittencourt A, Asquith B, Taylor GP, Bangham CRM: Strongyloidiasis and infective dermatitis alter human T lymphotropic virus-1 clonality in vivo. PLoS Pathog 2013, 9:e1003263.
  • [29]Tendler CL, Greenberg SJ, Blattner W, Manns A, Murphy E, Fleisher T, Hanchard B, Morgan O, Burton JD, Nelson DL: Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: pathogenic implications and a rationale for immunotherapy. Proc Natl Acad Sci U S A 1990, 87:5218-5222.
  • [30]Azimi N, Mariner J, Jacobson S, Waldmann TA: How does interleukin 15 contribute to the pathogenesis of HTLV type 1-associated myelopathy/tropical spastic paraparesis? AIDS Res Hum Retroviruses 2000, 16:1717-1722.
  • [31]Kaplan JEOM, Kubota H, Igata A, Nishitani H, Maeda Y, Khabbaz RF, Janssen RS: The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr 1990, 3:1096-1101.
  • [32]Tosswill JHC, Taylor GP, Tedder RS, Mortimer PP, Voss LD, Mulligan J: HTLV-I/II associated disease in England and Wales, 1993–7: retrospective review of serology requests. Br Med J 2000, 320:611-612.
  • [33]Itoh Y, Mizuki N, Shimada T, Azuma F, Itakura M, Kashiwase K, Kikkawa E, Kulski JK, Satake M, Inoko H: High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenetics 2005, 57:717-729.
  • [34]Suemori K, Fujiwara H, Ochi T, Ogawa T, Matsuoka M, Matsumoto T, Mesnard J-M, Yasukawa M: HBZ is an immunogenic protein, but not a target antigen for human T-cell leukemia virus type 1-specific cytotoxic T lymphocytes. J Gen Virol 2009, 90:1806-1811.
  • [35]Hilburn S, Rowan A, Demontis M-A, MacNamara A, Asquith B, Bangham CRM, Taylor GP: In vivo expression of human T-lymphotropic virus type 1 basic leucine-zipper protein generates specific CD8+ and CD4+ T-lymphocyte responses that correlate with clinical outcome. J Infect Dis 2011, 203:529-536.
  • [36]Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ: The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004, 32:D493-D496.
  文献评价指标  
  下载次数:22次 浏览次数:9次