| Molecular Neurodegeneration | |
| CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases | |
| Xiao-Jiang Li1  Xiangyu Guo2  Sen Yan2  Weili Yang2  Zhuchi Tu2  | |
| [1] Department of Human Genetics, Emory University School of Medicine, Atlanta 30322, GA, USA;Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China | |
| 关键词: Animal model; Neurodegenerative diseases; Non-human primates; CRISPR/Cas9; | |
| Others : 1221856 DOI : 10.1186/s13024-015-0031-x |
|
| received in 2015-06-08, accepted in 2015-07-24, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Animal models are extremely valuable to help us understand the pathogenesis of neurodegenerative disorders and to find treatments for them. Since large animals are more like humans than rodents, they make good models to identify the important pathological events that may be seen in humans but not in small animals; large animals are also very important for validating effective treatments or confirming therapeutic targets. Due to the lack of embryonic stem cell lines from large animals, it has been difficult to use traditional gene targeting technology to establish large animal models of neurodegenerative diseases. Recently, CRISPR/Cas9 was used successfully to genetically modify genomes in various species. Here we discuss the use of CRISPR/Cas9 technology to establish large animal models that can more faithfully mimic human neurodegenerative diseases.
【 授权许可】
2015 Tu et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150804040035233.pdf | 849KB | ||
| Fig. 2. | 60KB | Image | |
| Fig. 1. | 80KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
【 参考文献 】
- [1]Chen Y, Neve RL, Liu H. Neddylation dysfunction in Alzheimer's disease. J Cell Mol Med. 2012; 16(11):2583-91.
- [2]Cookson MR. The biochemistry of Parkinson's disease. Annu Rev Biochem. 2005; 74:29-52.
- [3]Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al.. Amyotrophic lateral sclerosis. The Lancet. 2011; 377(9769):942-955.
- [4]Ribeiro FM, Camargos ER, Souza LC, Teixeira AL. Animal models of neurodegenerative diseases. Rev Bras Psiquiatr. 2013; 35 Suppl 2:S82-91.
- [5]Lee Y, Dawson VL, Dawson TM. Animal models of Parkinson's disease: vertebrate genetics. Cold Spring Harb Perspect Med. 2012;2(10): doi:10.1101/cshperspect.a009324.
- [6]Gusella JF, MacDonald ME, Ambrose CM, Duyao MP. Molecular genetics of Huntington's disease. Arch Neurol. 1993; 50(11):1157-1163.
- [7]Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S et al.. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet. 1993; 4(4):398-403.
- [8]Coppola A, Moshe SL. Animal models. Handb Clin Neurol. 2012; 107:63-98.
- [9]Van Den Bosch L. Genetic rodent models of amyotrophic lateral sclerosis. J Biomed Biotechnol. 2011; 2011:348765.
- [10]Hoke A, Ray M. Rodent models of chemotherapy-induced peripheral neuropathy. ILAR J. 2014; 54(3):273-81.
- [11]Babin PJ, Goizet C, Raldua D. Zebrafish models of human motor neuron diseases: Advantages and limitations. Progr Neurobiol. 2014; 118:36-58.
- [12]Angela Cenci M, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nature. 2002; 3:6.
- [13]Li XJ, Li S. Large Animal Models of Huntington's Disease. Curr Top Behav Neurosci. 2015; 22:149-60.
- [14]Hayden MR, Goldblatt J, Wallis G, Winship IM, Beighton P. Molecular genetics and Huntington's disease. The South African situation. S Afr Med J. 1987; 71(11):683-6.
- [15]Crook ZR, Housman D. Huntington's disease: can mice lead the way to treatment? Neuron. 2011; 69(3):423-35.
- [16]Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA et al.. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron. 2012; 74(6):1031-44.
- [17]Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. Cell. 1996;87:14.
- [18]Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP et al.. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J Neurosci. 1999; 19(8):3248-57.
- [19]Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y et al.. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003; 12(13):1555-67.
- [20]Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, Lu XH et al.. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci. 2008; 28(24):6182-95.
- [21]Wheeler VC, Auerbach W, White JK, Srinidhi J, Auerbach A, Ryan A et al.. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum Mol Genet. 1999; 8(1):115-122.
- [22]Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ et al.. Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet. 2000; 9(4):503-13.
- [23]Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA et al.. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet. 1999; 8(3):397-407.
- [24]Hodgson JG, Agopyan N, Gutekunst C-A, Leavitt BR, LePiane F, Singaraja R et al.. A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron. 1999; 23(1):181-192.
- [25]Yang D, Wang CE, Zhao B, Li W, Ouyang Z, Liu Z et al.. Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet. 2010; 19(20):3983-94.
- [26]Mielcarek M, Inuabasi L, Bondulich MK, Muller T, Osborne GF, Franklin SA et al.. Dysfunction of the CNS-heart axis in mouse models of Huntington's disease. PLoS Genetics. 2014; 10(8):e1004550.
- [27]Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R, Ikeda JE et al.. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res. 2001; 10(6):577-82.
- [28]Baxa M, Hruska-Plochan M, Juhas S, Vodicka P, Pavlok A, Juhasova J et al.. A transgenic minipig model of Huntington's Disease. J Huntingtons Dis. 2013; 2(1):47-68.
- [29]Jacobsen JC, Bawden CS, Rudiger SR, McLaughlan CJ, Reid SJ, Waldvogel HJ et al.. An ovine transgenic Huntington's disease model. Hum Mol Genet. 2010; 19(10):1873-82.
- [30]Zielonka D, Mielcarek M, Landwehrmeyer GB. Update on Huntington's disease: advances in care and emerging therapeutic options. Parkinsonism Relat Disord. 2015; 21(3):169-78.
- [31]Garriga-Canut M, Agustin-Pavon C, Herrmann F, Sanchez A, Dierssen M, Fillat C et al.. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A. 2012; 109(45):E3136-45.
- [32]Mitsumoto H, Hanson MR, Chad DA. Amyotrophic lateral sclerosis. Recent advances in pathogenesis and therapeutic trials. Arch Neurol. 1988; 45(2):189-202.
- [33]Louvel E, Hugon J, Doble A. Therapeutic advances in amyotrophic lateral sclerosis. Trends Pharmacol Sci. 1997; 18(6):196-203.
- [34]Ayach L, Curti C, Montana M, Pisano P, Vanelle P. Amyotrophic lateral sclerosis: update on etiological treatment. Therapie. 2013; 68(2):93-106.
- [35]Joyce PI, Fratta P, Fisher EMC, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome. 2011; 22(7–8):420-448.
- [36]Schmucker S, Puccio H. Understanding the molecular mechanisms of Friedreich Ataxia to develop therapeutic approaches. Hum Mol Genet. 2010;19(R1):R103–10
- [37]Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al.. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006; 314(5796):130-133.
- [38]Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol. 2014; 127(2):151-73.
- [39]Yang H, Wang G, Sun H, Shu R, Liu T, Wang CE et al.. Species-dependent neuropathology in transgenic SOD1 pigs. Cell Res. 2014; 24(4):464-81.
- [40]Migheli A, Atzori C, Piva R, Tortarolo M, Girelli M, Schiffer D et al.. Lack of apoptosis in mice with ALS. Nat Med. 1999; 5(9):966-967.
- [41]Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci. 2001; 2(11):806-819.
- [42]Barrett EF, Barrett JN, David G. Mitochondria in motor nerve terminals: function in health and in mutant superoxide dismutase 1 mouse models of familial ALS. J Bioenerg Biomembr. 2011; 43(6):581-6.
- [43]Sondergaard LV, Ladewig J, Dagnaes-Hansen F, Herskin MS, Holm IE. Object recognition as a measure of memory in 1–2 years old transgenic minipigs carrying the APPsw mutation for Alzheimer's disease. Transgenic Res. 2012; 21(6):1341-8.
- [44]Chan AWS, Chong KY, Martinovich C, Simerly C, Schatten G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science. 2001; 291(5502):309-312.
- [45]Nasir J. Transgenic monkey raises hope for primate models of human diseases. Clin Genet. 2001; 59(5):304-5.
- [46]Senior K. What next after the first transgenic monkey? Lancet. 2001;357(9254):450
- [47]Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC et al.. Towards a transgenic model of Huntington's disease in a non-human primate. Nature. 2008; 453(7197):921-4.
- [48]Niu Y, Guo X, Chen Y, Wang CE, Gao J, Yang W, et al. Early Parkinson's disease symptoms in α-synuclein transgenic monkeys. Hum Mol Genet. 2014;24(8):2308–17.
- [49]Parkinson J. An essay on the shaking palsy. 2014.
- [50]Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. science. 1997;276(5321):2045–47.
- [51]Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatr. 2008; 79(4):368-376.
- [52]Bugos O, Bhide M, Zilka N. Beyond the rat models of human neurodegenerative disorders. Cell Mol Neurobiol. 2009; 29(6–7):859-69.
- [53]Schwarting R, Huston J. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progr Neurobiol. 1996; 50(2):275-331.
- [54]Beal MF. Parkinson's disease: a model dilemma. Nature. 2010; 466(7310):S8-S10.
- [55]Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003; 39(6):889-909.
- [56]Yang W, Wang G, Wang C-E, Guo X, Yin P, Gao J et al.. Mutant alpha-synuclein causes Age-dependent neuropathology in monkey brain. J Neurosci. 2015; 35(21):8345-8358.
- [57]Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013; 31(3):230-2.
- [58]Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al.. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339(6121):819-23.
- [59]Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S et al.. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8.
- [60]Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013; 10(10):957-963.
- [61]Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al.. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotech. 2013; 31(8):686-688.
- [62]Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 2014; 24(3):372-5.
- [63]Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z et al.. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci. 2015; 72(6):1175-84.
- [64]Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L et al.. Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell. 2014; 156(4):836-43.
- [65]Chen Y, Zheng Y, Kang Y, Yang W, Niu Y, Guo X et al.. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet. 2015; 24(13):3764-74.
- [66]Chen Y, Cui Y, Shen B, Niu Y, Zhao X, Wang L et al.. Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Res. 2015; 25(2):262-5.
- [67]Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y et al.. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res. 2015; 25(2):258-61.
- [68]Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al.. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009; 326(5959):1509-12.
- [69]Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al.. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010; 186(2):757-61.
- [70]Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. J Genet Genomics. 2013; 40(6):281-9.
- [71]Harrison MM, Jenkins BV, O'Connor-Giles KM, Wildonger J. A CRISPR view of development. Gene Dev. 2014; 28(17):1859-1872.
- [72]Sampson TR, Weiss DS. CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Front Cell Infect Microbiol. 2014; 4:37.
- [73]Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014; 32(4):347-55.
- [74]Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157(6):1262-78.
- [75]Yen ST, Zhang M, Deng JM, Usman SJ, Smith CN, Parker-Thornburg J et al.. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev Biol. 2014; 393(1):3-9.
- [76]Long CZ, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014; 345(6201):1184-1188.
- [77]Kondo S, Ueda R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics. 2013; 195(3):715-21.
- [78]Cros D, Harnden P, Pellissier JF, Serratrice G. Muscle hypertrophy in Duchenne muscular dystrophy. A pathological and morphometric study. J Neurol. 1989; 236(1):43-7.
- [79]Tsao CY, Bartolo C, Luquette MH, Mendell JR, Prior TW. A novel mechanism for the expression of dystrophin in a Duchenne muscular dystrophy patient. Neurology. 1996;46(2):12002–2.
- [80]Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015; 33(5):538-42.
- [81]Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y et al.. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res. 2014; 24(1):125-31.
- [82]Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE et al.. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013; 154(6):1380-9.
- [83]Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K et al.. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015; 33(5):543-8.
- [84]Straub C, Granger AJ, Saulnier JL, Sabatini BL. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS One. 2014; 9(8): Article ID e105584
- [85]Incontro S et al.. Efficient Complete Deletion of Synaptic Proteins using CRISPR. Neuron. 2014; 83:1051-1057.
- [86]Swiech L et al.. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol. 2015; 33:102-106.
PDF