期刊论文详细信息
Virology Journal
CHD1 and CHD2 are positive regulators of HIV-1 gene expression
John AT Young2  Kenneth A Bradley1  David J Banks1  Melissa J Rodgers2 
[1] Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA;The Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
关键词: Transcription;    Chromatin remodeling;    CHD2;    CHD1;    HIV;   
Others  :  1148242
DOI  :  10.1186/1743-422X-11-180
 received in 2014-05-23, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

Retroviruses encode a very limited number of proteins and therefore must exploit a wide variety of host proteins for completion of their lifecycle.

Methods

We performed an insertional mutagenesis screen to identify novel cellular regulators of retroviral replication.

Results

This approach identified the ATP-dependent chromatin remodeler, chromodomain helicase DNA-binding protein 2 (CHD2), as well as the highly related CHD1 protein, as positive regulators of both MLV and HIV-1 replication in rodent and human cells. RNAi knockdown of either CHD2 or the related CHD1 protein, in human cells resulted in a block to infection by HIV-1, specifically at the level of transcription.

Conclusions

These results demonstrate that CHD1 and CHD2 can act as positive regulators of HIV-1 gene expression.

【 授权许可】

   
2014 Rodgers et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404113708302.pdf 1187KB PDF download
Figure 4. 90KB Image download
Figure 3. 134KB Image download
Figure 2. 46KB Image download
Figure 1. 103KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ: Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008, 319:921-926.
  • [2]Konig R, Zhou Y, Elleder D, Diamond TLMBG, Irelan JTYCC, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK: Global analysis of host-pathogen interactions which regulate early stage HIV-1 replication. Cell 2008, 135:49-60.
  • [3]Yeung ML, Houzet L, Yedavalli VS, Jeang KT: A Genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 2009, 284:19463-19473.
  • [4]Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS: Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008, 4:495-504.
  • [5]Skene PJ, Hernandez AE, Groudine M, Henikoff S: The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. Elife 2014, 3:e02042.
  • [6]Hennig BP, Bendrin K, Zhou Y, Fischer T: Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep 2012, 13:997-1003.
  • [7]Bruce JW, Ahlquist P, Young JA: The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment. PLoS Pathog 2008, 4:e1000207.
  • [8]Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS: Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A 1997, 94:11472-11477.
  • [9]Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, Clines KL, Kim Y, Minor W, Rastinejad F, Khorasanizadeh S: Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 2005, 438:1181-1185.
  • [10]Hargreaves DC, Crabtree GR: ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011, 21:396-420.
  • [11]Marfella CG, Imbalzano AN: The Chd family of chromatin remodelers. Mutat Res 2007, 618:30-40.
  • [12]Kelley DE, Stokes DG, Perry RP: CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 1999, 108:10-25.
  • [13]Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF: RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 2002, 22:6979-6992.
  • [14]Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, Hartzog GA, Arndt KM: Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. Embo J 2003, 22:1846-1856.
  • [15]Stokes DG, Tartof KD, Perry RP: CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 1996, 93:7137-7142.
  • [16]Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA: Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 2005, 433:434-438.
  • [17]Tran HG, Steger DJ, Iyer VR, Johnson AD: The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. Embo J 2000, 19:2323-2331.
  • [18]Sims RJ 3rd, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D: Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 2005, 280:41789-41792.
  • [19]Hauk G, McKnight JN, Nodelman IM, Bowman GD: The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol Cell 2010, 39:711-723.
  • [20]Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E, Ramalho-Santos M: Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 2009, 460:863-868.
  • [21]Lin JJ, Lehmann LW, Bonora G, Sridharan R, Vashisht AA, Tran N, Plath K, Wohlschlegel JA, Carey M: Mediator coordinates PIC assembly with recruitment of CHD1. Genes Dev 2011, 25:2198-2209.
  • [22]Vanti M, Gallastegui E, Respaldiza I, Rodriguez-Gil A, Gomez-Herreros F, Jimeno-Gonzalez S, Jordan A, Chavez S: Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription. PLoS Genet 2009, 5:e1000339.
  • [23]Gallastegui E, Millan-Zambrano G, Terme JM, Chavez S, Jordan A: Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol 2011, 85:3187-3202.
  • [24]Marfella CG, Ohkawa Y, Coles AH, Garlick DS, Jones SN, Imbalzano AN: Mutation of the SNF2 family member Chd2 affects mouse development and survival. J Cell Physiol 2006, 209:162-171.
  • [25]Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, Venkatachalam S: Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene 2009, 28:1053-1062.
  • [26]Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A, Fyodorov DV: CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 2007, 317:1087-1090.
  • [27]Harada A, Okada S, Konno D, Odawara J, Yoshimi T, Yoshimura S, Kumamaru H, Saiwai H, Tsubota T, Kurumizaka H, Akashi K, Tachibana T, Imbalzano AN, Ohkawa Y: Chd2 interacts with H3.3 to determine myogenic cell fate. Embo J 2012, 31:2994-3007.
  • [28]Banks DJ, Bradley KA: SILENCE: a new forward genetic technology. Nat Methods 2007, 4:51-53.
  • [29]Deuschle U, Meyer WK, Thiesen HJ: Tetracycline-reversible silencing of eukaryotic promoters. Mol Cell Biol 1995, 15:1907-1914.
  • [30]Gossen M, Bujard H: Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992, 89:5547-5551.
  • [31]Wu X, Li Y, Crise B, Burgess SM: Transcription start regions in the human genome are favored targets for MLV integration. Science 2003, 300:1749-1751.
  • [32]Murawska M, Brehm A: CHD chromatin remodelers and the transcription cycle. Transcription 2011, 2:244-253.
  • [33]Cheung V, Chua G, Batada NN, Landry CR, Michnick SW, Hughes TR, Winston F: Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol 2008, 6:e277.
  • [34]Konig R, Chiang CY, Tu BP, Yan SF, DeJesus PD, Romero A, Bergauer T, Orth A, Krueger U, Zhou Y, Chanda SK: A probability-based approach for the analysis of large-scale RNAi screens. Nat Methods 2007, 4:847-849.
  • [35]Connor RI, Chen BK, Choe S, Landau NR: Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 1995, 206:935-944.
  • [36]Daviet L, Bois F, Battisti PL, Gatignol A: Identification of limiting steps for efficient trans-activation of HIV-1 promoter by Tat in Saccharomyces cerevisiae. J Biol Chem 1998, 273:28219-28228.
  • [37]Butler SL, Hansen MS, Bushman FD: A quantitative assay for HIV DNA integration in vivo. Nat Med 2001, 7:631-634.
  • [38]Lassen KG, Bailey JR, Siliciano RF: Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J Virol 2004, 78:9105-9114.
  • [39]Munk C, Brandt SM, Lucero G, Landau NR: A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci U S A 2002, 99:13843-13848.
  文献评价指标  
  下载次数:48次 浏览次数:12次