Epigenetics & Chromatin | |
Transcription-coupled recruitment of human CHD1 and CHD2 influences chromatin accessibility and histone H3 and H3.3 occupancy at active chromatin regions | |
Karl Ekwall1  Andreas Lennartsson1  Michelle Rönnerblad1  Lina Cordeddu1  Lee Siggens1  | |
[1] Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge 141 83, Sweden | |
关键词: H3.3; H3; DNase; ENCODE; CHD2; CHD1; chromatin remodeling; | |
Others : 1114910 DOI : 10.1186/1756-8935-8-4 |
|
received in 2014-10-28, accepted in 2014-12-23, 发布年份 2015 | |
【 摘 要 】
Background
CHD1 and CHD2 chromatin remodeling enzymes play important roles in development, cancer and differentiation. At a molecular level, the mechanisms are not fully understood but include transcriptional regulation, nucleosome organization and turnover.
Results
Here we show human CHD1 and CHD2 enzymes co-occupy active chromatin regions associated with transcription start sites (TSS), enhancer like regions and active tRNA genes. We demonstrate that their recruitment is transcription-coupled. CHD1 and CHD2 show distinct binding profiles across active TSS regions. Depletion of CHD1 influences chromatin accessibility at TSS and enhancer-like chromatin regions. CHD2 depletion causes increased histone H3 and reduced histone variant H3.3 occupancy.
Conclusions
We conclude that transcription-coupled recruitment of CHD1 and CHD2 occurs at transcribed gene TSSs and at intragenic and intergenic enhancer-like sites. The recruitment of CHD1 and CHD2 regulates the architecture of active chromatin regions through chromatin accessibility and nucleosome disassembly.
【 授权许可】
2015 Siggens et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150205030316239.pdf | 1842KB | download | |
Figure 7. | 93KB | Image | download |
Figure 6. | 53KB | Image | download |
Figure 5. | 32KB | Image | download |
Figure 4. | 60KB | Image | download |
Figure 3. | 56KB | Image | download |
Figure 2. | 27KB | Image | download |
Figure 1. | 99KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Narlikar GJ, Sundaramoorthy R, Owen-Hughes T: Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 2013, 154(3):490-503.
- [2]Hargreaves DC, Crabtree GR: ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011, 21(3):396-420.
- [3]Flaus A, Martin DM, Barton GJ, Owen-Hughes T: Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 2006, 34(10):2887-905.
- [4]Murawska M, Brehm A: CHD chromatin remodelers and the transcription cycle. Transcription 2011, 2(6):244-53.
- [5]Marfella CG, Imbalzano AN: The Chd family of chromatin remodelers. Mutat Res 2007, 618(1–2):30-40.
- [6]Burkhardt L, Fuchs S, Krohn A, Masser S, Mader M, Kluth M, et al.: CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res 2013, 73(9):2795-805.
- [7]Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, et al.: Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 2009, 460(7257):863-8.
- [8]Huang S, Gulzar ZG, Salari K, Lapointe J, Brooks JD, Pollack JR: Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness. Oncogene 2012, 31(37):4164-70.
- [9]Lin JJ, Lehmann LW, Bonora G, Sridharan R, Vashisht AA, Tran N, et al.: Mediator coordinates PIC assembly with recruitment of CHD1. Genes Dev 2011, 25(20):2198-209.
- [10]Pointner J, Persson J, Prasad P, Norman-Axelsson U, Strålfors A, Khorosjutina O, et al.: CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 2012, 31(23):4388-403.
- [11]Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al.: Punctuated evolution of prostate cancer genomes. Cell 2013, 153(3):666-77.
- [12]Harada A, Okada S, Konno D, Odawara J, Yoshimi T, Yoshimura S, et al.: Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J 2012, 31(13):2994-3007.
- [13]Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, Venkatachalam S: Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene 2009, 28(8):1053-62.
- [14]Marfella CG, Ohkawa Y, Coles AH, Garlick DS, Jones SN, Imbalzano AN: Mutation of the SNF2 family member Chd2 affects mouse development and survival. J Cell Physiol 2006, 209(1):162-71.
- [15]Marfella CG, Henninger N, LeBlanc SE, Krishnan N, Garlick DS, Holzman LB, et al.: A mutation in the mouse Chd2 chromatin remodeling enzyme results in a complex renal phenotype. Kidney Blood Press Res 2008, 31(6):421-32.
- [16]Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, et al.: CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 2007, 317(5841):1087-90.
- [17]Lusser A, Urwin DL, Kadonaga JT: Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 2005, 12(2):160-6.
- [18]Radman-Livaja M, Quan TK, Valenzuela L, Armstrong JA, van Welsem T, Kim T, et al.: A key role for Chd1 in histone H3 dynamics at the 3' ends of long genes in yeast. PLoS Genet 2012, 8(7):e1002811.
- [19]Walfridsson J, Khorosjutina O, Matikainen P, Gustafsson CM, Ekwall K: A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly. EMBO J 2007, 26(12):2868-79.
- [20]Sims RJ, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D: Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 2005, 280(51):41789-92.
- [21]Morettini S, Tribus M, Zeilner A, Sebald J, Campo-Fernandez B, Scheran G, et al.: The chromodomains of CHD1 are critical for enzymatic activity but less important for chromatin localization. Nucleic Acids Res 2011, 39(8):3103-15.
- [22]Kelley DE, Stokes DG, Perry RP: CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 1999, 108(1):10-25.
- [23]Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, et al.: Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J 2003, 22(8):1846-56.
- [24]Shema-Yaacoby E, Nikolov M, Haj-Yahya M, Siman P, Allemand E, Yamaguchi Y, et al.: Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep 2013, 4(3):601-8.
- [25]Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, et al.: Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 2012, 19(9):884-92.
- [26]Khorosjutina O, Wanrooij PH, Walfridsson J, Szilagyi Z, Zhu X, Baraznenok V, et al.: A chromatin-remodeling protein is a component of fission yeast mediator. J Biol Chem 2010, 285(39):29729-37.
- [27]Flanagan JF, Blus BJ, Kim D, Clines KL, Rastinejad F, Khorasanizadeh S: Molecular implications of evolutionary differences in CHD double chromodomains. J Mol Biol 2007, 369(2):334-42.
- [28]Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al.: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473(7345):43-9.
- [29]Skene PJ, Hernandez AE, Groudine M, Henikoff S: The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. Elife 2014, 3:e02042.
- [30]Zentner GE, Tsukiyama T, Henikoff S: ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet 2013, 9(2):e1003317.
- [31]Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, et al.: Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res 2009, 19(4):590-601.
- [32]Schnetz MP, Handoko L, Akhtar-Zaidi B, Bartels CF, Pereira CF, Fisher AG, et al.: CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet 2010, 6(7):e1001023.
- [33]Vavouri T, Lehner B: Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biol 2012, 13(11):R110. BioMed Central Full Text
- [34]Barski A, Chepelev I, Liko D, Cuddapah S, Fleming AB, Birch J, et al.: Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat Struct Mol Biol 2010, 17(5):629-34.
- [35]Listerman I, Bledau AS, Grishina I, Neugebauer KM: Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III. PLoS Genet 2007, 3(11):e212.
- [36]Canella D, Praz V, Reina JH, Cousin P, Hernandez N: Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res 2010, 20(6):710-21.
- [37]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.: Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9(9):R137. BioMed Central Full Text
- [38]Dey P, Ponnusamy MP, Deb S, Batra SK: Human RNA polymerase II-association factor 1 (hPaf1/PD2) regulates histone methylation and chromatin remodeling in pancreatic cancer. PLoS One 2011, 6(10):e26926.
- [39]Pray-Grant MG, Daniel JA, Schieltz D, Yates JR, Grant PA: Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 2005, 433(7024):434-8.
- [40]Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF: Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 2012, 149(7):1461-73.
- [41]Park D, Shivram H, Iyer VR: Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns. Epigenetics Chromatin 2014, 7:32. doi:10.1186/1756-8935-7-32 BioMed Central Full Text
- [42]Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al.: The accessible chromatin landscape of the human genome. Nature 2012, 489(7414):75-82.
- [43]He HH, Meyer CA, Chen MW, Jordan VC, Brown M, Liu XS: Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res 2012, 22(6):1015-25.
- [44]Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, et al.: H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 2011, 30(20):4198-210.
- [45]Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, et al.: Intragenic enhancers act as alternative promoters. Mol Cell 2012, 45(4):447-58.
- [46]Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al.: Landscape of transcription in human cells. Nature 2012, 489(7414):101-8.
- [47]Sims RJ, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, et al.: Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 2007, 28(4):665-76.
- [48]Vierstra J, Wang H, John S, Sandstrom R, Stamatoyannopoulos JA: Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH. Nat Methods 2014, 11(1):66-72.
- [49]Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013, 10(12):1213-8.
- [50]Ballaré C, Castellano G, Gaveglia L, Althammer S, González-Vallinas J, Eyras E, et al.: Nucleosome-driven transcription factor binding and gene regulation. Mol Cell 2013, 49(1):67-79.
- [51]Bugga L, McDaniel IE, Engie L, Armstrong JA: The Drosophila melanogaster CHD1 chromatin remodeling factor modulates global chromosome structure and counteracts HP1a and H3K9me2. PLoS One 2013, 8(3):e59496.
- [52]Ahmad K, Henikoff S: The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 2002, 9(6):1191-200.
- [53]Hauk G, McKnight JN, Nodelman IM, Bowman GD: The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol Cell 2010, 39(5):711-23.
- [54]Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al.: An atlas of active enhancers across human cell types and tissues. Nature 2014, 507(7493):455-61.
- [55]Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS, et al.: Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 2013, 27(24):2648-62.
- [56]Morris SA, Baek S, Sung MH, John S, Wiench M, Johnson TA, et al.: Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat Struct Mol Biol 2014, 21(1):73-81.