期刊论文详细信息
Epigenetics & Chromatin
Transcription-coupled recruitment of human CHD1 and CHD2 influences chromatin accessibility and histone H3 and H3.3 occupancy at active chromatin regions
Karl Ekwall1  Andreas Lennartsson1  Michelle Rönnerblad1  Lina Cordeddu1  Lee Siggens1 
[1] Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge 141 83, Sweden
关键词: H3.3;    H3;    DNase;    ENCODE;    CHD2;    CHD1;    chromatin remodeling;   
Others  :  1114910
DOI  :  10.1186/1756-8935-8-4
 received in 2014-10-28, accepted in 2014-12-23,  发布年份 2015
PDF
【 摘 要 】

Background

CHD1 and CHD2 chromatin remodeling enzymes play important roles in development, cancer and differentiation. At a molecular level, the mechanisms are not fully understood but include transcriptional regulation, nucleosome organization and turnover.

Results

Here we show human CHD1 and CHD2 enzymes co-occupy active chromatin regions associated with transcription start sites (TSS), enhancer like regions and active tRNA genes. We demonstrate that their recruitment is transcription-coupled. CHD1 and CHD2 show distinct binding profiles across active TSS regions. Depletion of CHD1 influences chromatin accessibility at TSS and enhancer-like chromatin regions. CHD2 depletion causes increased histone H3 and reduced histone variant H3.3 occupancy.

Conclusions

We conclude that transcription-coupled recruitment of CHD1 and CHD2 occurs at transcribed gene TSSs and at intragenic and intergenic enhancer-like sites. The recruitment of CHD1 and CHD2 regulates the architecture of active chromatin regions through chromatin accessibility and nucleosome disassembly.

【 授权许可】

   
2015 Siggens et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150205030316239.pdf 1842KB PDF download
Figure 7. 93KB Image download
Figure 6. 53KB Image download
Figure 5. 32KB Image download
Figure 4. 60KB Image download
Figure 3. 56KB Image download
Figure 2. 27KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Narlikar GJ, Sundaramoorthy R, Owen-Hughes T: Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 2013, 154(3):490-503.
  • [2]Hargreaves DC, Crabtree GR: ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011, 21(3):396-420.
  • [3]Flaus A, Martin DM, Barton GJ, Owen-Hughes T: Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 2006, 34(10):2887-905.
  • [4]Murawska M, Brehm A: CHD chromatin remodelers and the transcription cycle. Transcription 2011, 2(6):244-53.
  • [5]Marfella CG, Imbalzano AN: The Chd family of chromatin remodelers. Mutat Res 2007, 618(1–2):30-40.
  • [6]Burkhardt L, Fuchs S, Krohn A, Masser S, Mader M, Kluth M, et al.: CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res 2013, 73(9):2795-805.
  • [7]Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, et al.: Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 2009, 460(7257):863-8.
  • [8]Huang S, Gulzar ZG, Salari K, Lapointe J, Brooks JD, Pollack JR: Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness. Oncogene 2012, 31(37):4164-70.
  • [9]Lin JJ, Lehmann LW, Bonora G, Sridharan R, Vashisht AA, Tran N, et al.: Mediator coordinates PIC assembly with recruitment of CHD1. Genes Dev 2011, 25(20):2198-209.
  • [10]Pointner J, Persson J, Prasad P, Norman-Axelsson U, Strålfors A, Khorosjutina O, et al.: CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 2012, 31(23):4388-403.
  • [11]Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al.: Punctuated evolution of prostate cancer genomes. Cell 2013, 153(3):666-77.
  • [12]Harada A, Okada S, Konno D, Odawara J, Yoshimi T, Yoshimura S, et al.: Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J 2012, 31(13):2994-3007.
  • [13]Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, Venkatachalam S: Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene 2009, 28(8):1053-62.
  • [14]Marfella CG, Ohkawa Y, Coles AH, Garlick DS, Jones SN, Imbalzano AN: Mutation of the SNF2 family member Chd2 affects mouse development and survival. J Cell Physiol 2006, 209(1):162-71.
  • [15]Marfella CG, Henninger N, LeBlanc SE, Krishnan N, Garlick DS, Holzman LB, et al.: A mutation in the mouse Chd2 chromatin remodeling enzyme results in a complex renal phenotype. Kidney Blood Press Res 2008, 31(6):421-32.
  • [16]Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, et al.: CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 2007, 317(5841):1087-90.
  • [17]Lusser A, Urwin DL, Kadonaga JT: Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 2005, 12(2):160-6.
  • [18]Radman-Livaja M, Quan TK, Valenzuela L, Armstrong JA, van Welsem T, Kim T, et al.: A key role for Chd1 in histone H3 dynamics at the 3' ends of long genes in yeast. PLoS Genet 2012, 8(7):e1002811.
  • [19]Walfridsson J, Khorosjutina O, Matikainen P, Gustafsson CM, Ekwall K: A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly. EMBO J 2007, 26(12):2868-79.
  • [20]Sims RJ, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D: Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 2005, 280(51):41789-92.
  • [21]Morettini S, Tribus M, Zeilner A, Sebald J, Campo-Fernandez B, Scheran G, et al.: The chromodomains of CHD1 are critical for enzymatic activity but less important for chromatin localization. Nucleic Acids Res 2011, 39(8):3103-15.
  • [22]Kelley DE, Stokes DG, Perry RP: CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 1999, 108(1):10-25.
  • [23]Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, et al.: Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J 2003, 22(8):1846-56.
  • [24]Shema-Yaacoby E, Nikolov M, Haj-Yahya M, Siman P, Allemand E, Yamaguchi Y, et al.: Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep 2013, 4(3):601-8.
  • [25]Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, et al.: Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 2012, 19(9):884-92.
  • [26]Khorosjutina O, Wanrooij PH, Walfridsson J, Szilagyi Z, Zhu X, Baraznenok V, et al.: A chromatin-remodeling protein is a component of fission yeast mediator. J Biol Chem 2010, 285(39):29729-37.
  • [27]Flanagan JF, Blus BJ, Kim D, Clines KL, Rastinejad F, Khorasanizadeh S: Molecular implications of evolutionary differences in CHD double chromodomains. J Mol Biol 2007, 369(2):334-42.
  • [28]Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al.: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473(7345):43-9.
  • [29]Skene PJ, Hernandez AE, Groudine M, Henikoff S: The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. Elife 2014, 3:e02042.
  • [30]Zentner GE, Tsukiyama T, Henikoff S: ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet 2013, 9(2):e1003317.
  • [31]Schnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, et al.: Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res 2009, 19(4):590-601.
  • [32]Schnetz MP, Handoko L, Akhtar-Zaidi B, Bartels CF, Pereira CF, Fisher AG, et al.: CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet 2010, 6(7):e1001023.
  • [33]Vavouri T, Lehner B: Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biol 2012, 13(11):R110. BioMed Central Full Text
  • [34]Barski A, Chepelev I, Liko D, Cuddapah S, Fleming AB, Birch J, et al.: Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat Struct Mol Biol 2010, 17(5):629-34.
  • [35]Listerman I, Bledau AS, Grishina I, Neugebauer KM: Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III. PLoS Genet 2007, 3(11):e212.
  • [36]Canella D, Praz V, Reina JH, Cousin P, Hernandez N: Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res 2010, 20(6):710-21.
  • [37]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.: Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9(9):R137. BioMed Central Full Text
  • [38]Dey P, Ponnusamy MP, Deb S, Batra SK: Human RNA polymerase II-association factor 1 (hPaf1/PD2) regulates histone methylation and chromatin remodeling in pancreatic cancer. PLoS One 2011, 6(10):e26926.
  • [39]Pray-Grant MG, Daniel JA, Schieltz D, Yates JR, Grant PA: Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 2005, 433(7024):434-8.
  • [40]Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF: Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 2012, 149(7):1461-73.
  • [41]Park D, Shivram H, Iyer VR: Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns. Epigenetics Chromatin 2014, 7:32. doi:10.1186/1756-8935-7-32 BioMed Central Full Text
  • [42]Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al.: The accessible chromatin landscape of the human genome. Nature 2012, 489(7414):75-82.
  • [43]He HH, Meyer CA, Chen MW, Jordan VC, Brown M, Liu XS: Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res 2012, 22(6):1015-25.
  • [44]Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, et al.: H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 2011, 30(20):4198-210.
  • [45]Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, et al.: Intragenic enhancers act as alternative promoters. Mol Cell 2012, 45(4):447-58.
  • [46]Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al.: Landscape of transcription in human cells. Nature 2012, 489(7414):101-8.
  • [47]Sims RJ, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, et al.: Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 2007, 28(4):665-76.
  • [48]Vierstra J, Wang H, John S, Sandstrom R, Stamatoyannopoulos JA: Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH. Nat Methods 2014, 11(1):66-72.
  • [49]Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013, 10(12):1213-8.
  • [50]Ballaré C, Castellano G, Gaveglia L, Althammer S, González-Vallinas J, Eyras E, et al.: Nucleosome-driven transcription factor binding and gene regulation. Mol Cell 2013, 49(1):67-79.
  • [51]Bugga L, McDaniel IE, Engie L, Armstrong JA: The Drosophila melanogaster CHD1 chromatin remodeling factor modulates global chromosome structure and counteracts HP1a and H3K9me2. PLoS One 2013, 8(3):e59496.
  • [52]Ahmad K, Henikoff S: The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 2002, 9(6):1191-200.
  • [53]Hauk G, McKnight JN, Nodelman IM, Bowman GD: The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol Cell 2010, 39(5):711-23.
  • [54]Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al.: An atlas of active enhancers across human cell types and tissues. Nature 2014, 507(7493):455-61.
  • [55]Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS, et al.: Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 2013, 27(24):2648-62.
  • [56]Morris SA, Baek S, Sung MH, John S, Wiench M, Johnson TA, et al.: Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat Struct Mol Biol 2014, 21(1):73-81.
  文献评价指标  
  下载次数:20次 浏览次数:10次