期刊论文详细信息
Respiratory Research
Increased in vivo mitochondrial oxygenation with right ventricular failure induced by pulmonary arterial hypertension: mitochondrial inhibition as driver of cardiac failure?
Coert J Zuurbier2  Willem J van der Laarse3  Patricia AC Specht4  Otto Eerbeek1  Egbert G Mik4  Gianmarco M Balestra4 
[1] Department of Anatomy, Embryology and Physiology, AMC, Amsterdam, The Netherlands;Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands;Department of Physiology, VUmc Medical Center, Amsterdam, The Netherlands;Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC- University Medical Center Rotterdam, Rotterdam, The Netherlands
关键词: Pulmonary arterial hypertension;    Heart failure;    Heart hypertrophy;    Mitochondria;    Oxygen;   
Others  :  1135885
DOI  :  10.1186/s12931-015-0178-6
 received in 2014-10-13, accepted in 2015-01-20,  发布年份 2015
PDF
【 摘 要 】

Background

The leading cause of mortality due to pulmonary arterial hypertension (PAH) is failure of the cardiac right ventricle. It has long been hypothesized that during the development of chronic cardiac failure the heart becomes energy deprived, possibly due to shortage of oxygen at the level of cardiomyocyte mitochondria. However, direct evaluation of oxygen tension levels within the in vivo right ventricle during PAH is currently lacking. Here we directly evaluated this hypothesis by using a recently reported technique of oxygen-dependent quenching of delayed fluorescence of mitochondrial protoprophyrin IX, to determine the distribution of mitochondrial oxygen tension (mitoPO2) within the right ventricle (RV) subjected to progressive PAH.

Methods

PAH was induced through a single injection of monocrotaline (MCT). Control (saline-injected), compensated RV hypertrophy (30 mg/kg MCT; MCT30), and RV failure (60 mg/kg MCT; MCT60) rats were compared 4 wk after treatment. The distribution of mitoPO2 within the RV was determined in mechanically-ventilated, anaesthetized animals, applying different inspired oxygen (FiO2) levels and two increment dosages of dobutamine.

Results

MCT60 resulted in RV failure (increased mortality, weight loss, increased lung weight), MCT30 resulted in compensated RV hypertrophy. At 30% or 40% FiO2, necessary to obtain physiological arterial PO2 in the diseased animals, RV failure rats had significantly less mitochondria (15% of total mitochondria) in the 0-20 mmHg mitoPO2 range than hypertrophied RV rats (48%) or control rats (54%). Only when oxygen supply was reduced to 21% FiO2, resulting in low arterial PO2 for the MCT60 animals, or when oxygen demand increased with high dose dobutamine, the number of failing RV mitochondria with low oxygen became similar to control RV. In addition, metabolic enzyme analysis revealed similar mitochondrial mass, increased glycolytic hexokinase activity following MCT, with increased lactate dehydrogenase activity only in compensated hypertrophied RV.

Conclusions

Our novel observation of increased mitochondrial oxygenation suggests down-regulation of in vivo mitochondrial oxygen consumption, in the absence of hypoxia, with transition towards right ventricular failure induced by pulmonary arterial hypertension.

【 授权许可】

   
2015 Balestra et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150311091447205.pdf 591KB PDF download
Figure 5. 32KB Image download
Figure 4. 47KB Image download
Figure 3. 68KB Image download
Figure 2. 57KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Vonk-Noordergraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al.: Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 2013, 62:D22-33.
  • [2]Katz AM: Cardiomyopathy of overload: a major determinant of prognosis in congestive heart failure. N Engl J Med 1989, 322:100-10.
  • [3]Murakami Y, Zhang Y, Cho YK, Mansoor AM, Chung JK, Chu C, et al.: Myocardial oxygenation during high work states in hearts with postinfarction remodelling. Circulation 1999, 99:942-94.
  • [4]Van Bilsen M, Smeets PJH, Gilde AJ, Van der Vusse GJ: Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res 2004, 2004(61):218-26.
  • [5]Neubauer S: The failing heart-an engine out of fuel. N Engl J Med 2007, 356:1140-51.
  • [6]Bache RJ, Zhang J, Murakami Y, Zhang Y, Cho YK, Merkle H, et al.: Myocardial oxygenation at high workloads in hearts with left ventricular hypertrophy. Cardiov Res 1999, 42:616-27.
  • [7]Traverse JH, Melchert P, Pierpont GL, Jones B, Crampton M, Bache RJ: Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise. Circ Res 1999, 84:401-8.
  • [8]Mik EG, Ince C, Eerbeek O, Heinen A, Stap J, Hooibrink B, et al.: Mitochondrial oxygen tension within the heart. J Mol Cell Cardiol 2009, 46:943-51.
  • [9]Hoffman DL, Salter JD, Brookes PS: Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signalling. Am J Physiol Heart Circ Physiol 2007, 292:H101-8.
  • [10]Wilson DF: Regulation of cellular metabolism: programming and maintaining metabolic homeostasis. J Appl Physiol 2013, 115:1583-8.
  • [11]Sutendra G, Dromparis P, Paulin R, Zervopoulos S, Haromy A, Nagendran J, et al.: A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med 2013, 91:1315-27.
  • [12]Brookes PS, Zhang J, Dai L, Parks DA, Darley-Usmar VM, Anderson PG: Increased sensitivity of mitochondrial respiration to inhibition by nitric oxide in cardiac hypertrophy. J Mol Cell Cardiol 2001, 33:69-82.
  • [13]Harms FA, Voorbeijtel WJ, Bodmer SI, Raat NJ, Mik EG: Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo. Mitochondrion 2013, 13:507-14.
  • [14]Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JH, Balestra GM, et al.: In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J 2008, 95:3977-90.
  • [15]Mik EG, Stap J, Sinaasappel M, Beek JF, Aten JA, van Leeuwen TG, et al.: Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporhyrin IX. Nat Methods 2006, 3:939-45.
  • [16]Des Tombe AL, Van Beek-Harmsen BJ, Lee-De Groot MB, Van der Laarse WJ: Calibrated histochemistry applied to oxygen supply and demand in hypertrophied rat myocardium. Microsc Res Tech 2002, 58:412-20.
  • [17]Gürel E, Smeele KM, Eerbeek O, Koeman A, Demirci C, Hollmann MW, et al.: Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia-reperfusion. J Appl Physiol 2009, 106:1909-16.
  • [18]Zuurbier CJ, Eerbeek O, Meijer AJ: Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol Heart Circ Physiol 2005, 289:H496-9.
  • [19]Daicho T, Yagi T, Abe Y, Ohara M, Marunouchi T, Takeo S, et al.: Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci 2009, 111:33-43.
  • [20]Piao L, Fang YH, Cadete VJJ, Wietholt C, Urboniene D, Toth PT, et al.: The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitation the hibernating right ventricle. J Mol Cell Cardiol 2010, 88:47-60.
  • [21]Piao L, Marsboom G, Archer SL: Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med 2010, 88:1011-20.
  • [22]Lamberts RR, Caldenhoven E, Lansink M, Witte G, Vaessen RJ, St Cyr JA, et al.: Preservation of diastolic function in monocrotaline-induced right ventricular hypertrophy in rats. Am J Physiol Heart Circ Physiol 2007, 293:H1869-976.
  • [23]Traverse JH, Chen Y, Hou M, Li Y, Bache RJ: Effects of K + ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure. Circ Res 2007, 100:1643-9.
  • [24]Van der Laarse WJ, Des Tombe AL, van Beek-Harmsen BJ, Lee-de Groot MB, Jaspers RT: Krogh’s diffusion coefficient for oxygen in isolated Xenopus skeletal muscle fibers and rat myocardial trabeculae at maximum rates of oxygen consumption. J Appl Physiol 2005, 99:2173-80.
  • [25]Do E, Baudet S, Verdys M, Touzeau C, Bailly F, Lucas-heron B, et al.: Energy metabolism in normal and hypertrophied right ventricle of the ferret heart. J Mol Cell Cardiol 1997, 29:1903-13.
  • [26]Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wig P, et al.: Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploring Randle’s cycle. J Mol Med 2012, 90:31-43.
  • [27]Zhang WH, Qiu MH, Wang XJ, Sun K, Zheng Y, Jing ZC: Up-regulation of hexokinase 1 in the right ventricle of monocortaline induced pulmonary hypertension. Respir Res 2014, 15:119. BioMed Central Full Text
  • [28]Drake JI, Bogaard HJ, Mizuno S, Clifton B, Xie B, Gao Y, et al.: Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol 2011, 45:1239-47.
  • [29]Nederlof R, Eerbeek O, Hollmann MW, Southworth R, Zuurbier CJ: Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischemia-reperfusion injury in heart. Brit J Pharmacol 2014, 171:2067-79.
  • [30]Nederlof R, Chaoqin X, Gurel E, Koeman A, Hollmann MW, Southworth R, et al.: Hexokinase II binding to mitochondria suppress irreversible ischemia reperfusion injury in the beating heart by respiratory inhibition and reduced ROS levels. Circ Res 2012, 111(Suppl):217.
  • [31]Ong SG, Hee Lee W, Theodorou L, Kodo K, Lim SY, Shukla DH, et al.: HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res 2014, 104:24-36.
  • [32]Chatham JC: Lactate-the forgotten fuel. J Physiol 2002, 542:333.
  • [33]Chatham JC, Gao ZP, Forder JR: Impact of 1 wk of diabetes on the regulation of myocardial carbohydrate and fatty acid oxidation. Am J Physiol Endocrinol Metab 1999, 277:E342-51.
  • [34]Traverse JH, Chen Y, Hou M, Bache RJ: Inhibition of NO production increases myocardial blood flow and oxygen consumtion in congestive heart failure. Am J Physiol Heart Circ Physiol 2002, 282:H2278-83.
  • [35]Nunn JF: Factors influencing the arterial oxygen tension during halothane anaesthesia with spontaneous respiration. Brit J Anaesth 1964, 36:327-41.
  • [36]Nunn JF, Bergman NA, Coleman AJ: Factors influencing the arterial oxygen tension during anaesthesia with artificial ventilation. Brit J Anaesth 1965, 37:898-914.
  • [37]Handoko ML, de Man FS, Happe CM, Schalij I, Musters RJP, Westerhof N, et al.: Opposite effects of training rats with stable nd progressive pulmonary hypertension. Circulation 2009, 12:42-9.
  • [38]Korstjens IJM, Rouws CHFC, van der Laarse WJ, van der Zee L, Stienen GJM: Myocardial force development and structural changes associated with monocrotaline induced cardiac hypertrophy and heart failure. J Muscl Res Cell Motil 2002, 23:93-102.
  文献评价指标  
  下载次数:17次 浏览次数:7次