期刊论文详细信息
Particle and Fibre Toxicology
Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands
Valerie Choumet3  Abdelkader Namane2  Jean-Claude Rousselle2  Pascal Lenormand2  Edouard Bourguet4  Stephane Tchankouo-Nguetcheu1 
[1] Unité de Génétique Moléculaire des Bunyavirus, 25 rue du Dr Roux, 75724, Paris cedex 15;Plate-forme protéomique PF5, Institut Pasteur, 28 rue du Dr Roux, 75724 cedex 15, Paris, France;present address: Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, 25, rue du Dr Roux, 75724 cedex 15, Paris, France;Unité de Biochimie et de Biologie Moléculaire des Insectes, Institut Pasteur, 28 rue du Dr Roux, 75724 cedex 15, Paris, France
关键词: Mass spectrometry;    Two-dimensional gel electrophoresis;    Proteomics;    Mosquito salivary gland;    Chikungunya virus;    Aedes aegypti;   
Others  :  1228837
DOI  :  10.1186/1756-3305-5-264
 received in 2012-08-29, accepted in 2012-11-12,  发布年份 2012
PDF
【 摘 要 】

Background

Arthropod-borne viral infections cause several emerging and resurging infectious diseases. Among the diseases caused by arboviruses, chikungunya is responsible for a high level of severe human disease worldwide. The salivary glands of mosquitoes are the last barrier before pathogen transmission.

Methods

We undertook a proteomic approach to characterize the key virus/vector interactions and host protein modifications that occur in the salivary glands that could be responsible for viral transmission by using quantitative two-dimensional electrophoresis.

Results

We defined the protein modulations in the salivary glands of Aedes aegypti that were triggered 3 and 5 days after an oral infection (3 and 5 DPI) with chikungunya virus (CHIKV). Gel profile comparisons showed that CHIKV at 3 DPI modulated the level of 13 proteins, and at 5 DPI 20 proteins. The amount of 10 putatively secreted proteins was regulated at both time points. These proteins were implicated in blood-feeding or in immunity, but many have no known function. CHIKV also modulated the quantity of proteins involved in several metabolic pathways and in cell signalling.

Conclusion

Our study constitutes the first analysis of the protein response of Aedes aegypti salivary glands infected with CHIKV. We found that the differentially regulated proteins in response to viral infection include structural proteins and enzymes for several metabolic pathways. Some may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by arboviruses. For example, proteins involved in blood-feeding such as the short D7, an adenosine deaminase and inosine-uridine preferring nucleoside hydrolase, may favour virus transmission by exerting an increased anti-inflammatory effect. This would allow the vector to bite without the bite being detected. Other proteins, like the anti-freeze protein, may support vector protection.

【 授权许可】

   
2012 Tchankouo-Nguetcheu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151019081852646.pdf 751KB PDF download
Figure 4. 60KB Image download
Figure 3. 84KB Image download
Figure 2. 52KB Image download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Beaty BJ: Control of arbovirus diseases: is the vector the weak link? Arch Virol Suppl 2005, 19:73-88.
  • [2]Fontaine A, Diouf I, Bakkali N, Missé D, Pagès F, Fusai T, Rogier C, Almeras L: Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors 2011, 4:187. BioMed Central Full Text
  • [3]Titus RG, Ribeiro JM: The role of vector saliva in transmission of arthropod-borne disease. Parasitol Today 1990, 6(5):157-160.
  • [4]Ribeiro JM, Francischetti IM: Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 2003, 48:73-88.
  • [5]Schneider BS, Higgs S: The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans R Soc Trop Med Hyg 2008, 102(5):400-408.
  • [6]Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, et al.: Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007, 316(5832):1718-1723.
  • [7]Choumet V, Carmi-Leroy A, Laurent C, Lenormand P, Rousselle JC, Namane A, Roth C, Brey PT: The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study. Proteomics 2007, 7(18):3384-3394.
  • [8]Vennestrom J, Jensen PM: Ixodes ricinus: the potential of two-dimensional gel electrophoresis as a tool for studying host-vector-pathogen interactions. Exp Parasitol 2007, 115(1):53-58.
  • [9]Brennan LJ, Keddie BA, Braig HR, Harris HL: The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS One 2008, 3(5):e2083.
  • [10]Luplertlop N, Surasombatpattana P, Patramool S, Dumas E, Wasinpiyamongkol L, Saune L, Hamel R, Bernard E, Sereno D, Thomas F, et al.: Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following Infection with Dengue Virus. PLoS Pathog 2011, 7(1):e1001252.
  • [11]Tchankouo-Nguetcheu S, Khun H, Pincet L, Roux P, Bahut M, Huerre M, Guette C, Choumet V: Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses. PLoS One 2010, 5(10):e13149.
  • [12]Wasinpiyamongkol L, Patramool S, Luplertlop N, Surasombatpattana P, Doucoure S, Mouchet F, Seveno M, Remoue F, Demettre E, Brizard JP, et al.: Blood-feeding and immunogenic Aedes aegypti saliva proteins. Proteomics 2010, 10(10):1906-1916.
  • [13]Thiboutot MM, Kannan S, Kawalekar OU, Shedlock DJ, Khan AS, Sarangan G, Srikanth P, Weiner DB, Muthumani K: Chikungunya: a potentially emerging epidemic? PLoS Negl Trop Dis 2010, 4(4):e623.
  • [14]Gibney KB, Fischer M, Prince HE, Kramer LD, St George K, Kosoy OL, Laven JJ, Staples JE: Chikungunya fever in the United States: a fifteen year review of cases. Clin Infect Dis 2011, 52(5):e121-e126.
  • [15]Solignat M, Gay B, Higgs S, Briant L, Devaux C: Replication cycle of chikungunya: a re-emerging arbovirus. Virology 2009, 393(2):183-197.
  • [16]Sudeep AB, Parashar D: Chikungunya: an overview. J Biosci 2008, 33(4):443-449.
  • [17]Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, et al.: Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 2006, 3(7):e263.
  • [18]Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq JS, Fontenille D, Schuffenecker I, et al.: Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2007, 2(11):e1168.
  • [19]Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux AB: Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One 2009, 4(6):e5895.
  • [20]Wu JH, Cheng JZ, Chen L: Sun Y: [Expression of the genes of adenosine deaminase, C-lectin and serpin in the salivary gland of Aedes albopictus]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2010, 28(3):190-193.
  • [21]Ribeiro JM, Charlab R, Valenzuela JG: The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti. J Exp Biol 2001, 204(Pt 11):2001-2010.
  • [22]Valenzuela JG, Pham VM, Garfield MK, Francischetti IM, Ribeiro JM: Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem Mol Biol 2002, 32(9):1101-1122.
  • [23]Takahashi M, Watari E, Shinya E, Shimizu T, Takahashi H: Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells. Antiviral Res 2007, 75(2):152-158.
  • [24]Darby NJ, van Straaten M, Penka E, Vincentelli R, Kemmink J: Identifying and characterizing a second structural domain of protein disulfide isomerase. FEBS Lett 1999, 448(1):167-172.
  • [25]Jiang XM, Fitzgerald M, Grant CM, Hogg PJ: Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. J Biol Chem 1999, 274(4):2416-2423.
  • [26]Klappa P, Hawkins HC, Freedman RB: Interactions between protein disulphide isomerase and peptides. Eur J Biochem 1997, 248(1):37-42.
  • [27]Yocupicio-Monroy RM, Medina F, Reyes-del Valle J, del Angel RM: Cellular proteins from human monocytes bind to dengue 4 virus minus-strand 3' untranslated region RNA. J Virol 2003, 77(5):3067-3076.
  • [28]Martin D, Duarte M, Lepault J, Poncet D: Sequestration of free tubulin molecules by the viral protein NSP2 induces microtubule depolymerization during rotavirus infection. J Virol 2010, 84(5):2522-2532.
  • [29]Paingankar MS, Gokhale MD, Deobagkar DN: Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol 2010, 155(9):1453-1461.
  • [30]Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A: Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 2005, 168(3):477-488.
  • [31]Bowers DF, Coleman CG, Brown DT: Sindbis virus-associated pathology in Aedes albopictus (Diptera: Culicidae). J Med Entomol 2003, 40(5):698-705.
  • [32]Zou Z, Shin SW, Alvarez KS, Kokoza V, Raikhel AS: Distinct melanization pathways in the mosquito Aedes aegypti. Immunity 2010, 32(1):41-53.
  • [33]Thangamani S, Wikel SK: Differential expression of Aedes aegypti salivary transcriptome upon blood feeding. Parasit Vectors 2009, 2:34. BioMed Central Full Text
  • [34]Smartt CT, Kim AP, Grossman GL, James AA: The Apyrase gene of the vector mosquito, Aedes aegypti, is expressed specifically in the adult female salivary glands. Exp Parasitol 1995, 81(3):239-248.
  • [35]Boisson B, Jacques JC, Choumet V, Martin E, Xu J, Vernick K, Bourgouin C: Gene silencing in mosquito salivary glands by RNAi. FEBS Lett 2006, 580(8):1988-1992.
  • [36]Simons FE, Peng Z: Mosquito allergy: recombinant mosquito salivary antigens for new diagnostic tests. Int Arch Allergy Immunol 2001, 124(1–3):403-405.
  • [37]Calvo E, Tokumasu F, Mizurini DM, McPhie P, Narum DL, Ribeiro JM, Monteiro RQ, Francischetti IM: Aegyptin displays high-affinity for the von Willebrand factor binding site (RGQOGVMGF) in collagen and inhibits carotid thrombus formation in vivo. FEBS J 2010, 277(2):413-427.
  • [38]Calvo E, Tokumasu F, Marinotti O, Villeval JL, Ribeiro JM, Francischetti IM: Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin alpha2beta1, and von Willebrand factor. J Biol Chem 2007, 282(37):26928-26938.
  • [39]Ribeiro JM, Arca B, Lombardo F, Calvo E, Phan VM, Chandra PK, Wikel SK: An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genomics 2007, 8(1):6. BioMed Central Full Text
  • [40]Duman JG: Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 2001, 63:327-357.
  • [41]Doucet D, Walker VK, Qin W: The bugs that came in from the cold: molecular adaptations to low temperatures in insects. Cell Mol Life Sci 2009, 66(8):1404-1418.
  • [42]Jia Z, Davies PL: Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 2002, 27(2):101-106.
  • [43]Davies PL, Baardsnes J, Kuiper MJ, Walker VK: Structure and function of antifreeze proteins. Philos Trans R Soc Lond B Biol Sci 2002, 357(1423):927-935.
  • [44]Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E: Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J Clin Invest 2010, 120(9):3179-3190.
  • [45]Calvo E, Mans BJ, Andersen JF, Ribeiro JM: Function and evolution of a mosquito salivary protein family. J Biol Chem 2006, 281(4):1935-1942.
  • [46]Grimstad PR, Ross QE, Craig GB Jr: Aedes triseriatus (Diptera: Culicidae) and La Crosse virus. II. Modification of mosquito feeding behavior by virus infection. J Med Entomol 1980, 17(1):1-7.
  • [47]Doucoure S, Mouchet F, Cournil A, Le Goff G, Cornelie S, Roca Y, Giraldez MG, Simon ZB, Loayza R, Misse D, et al.: Human antibody response to Aedes aegypti saliva in an urban population in Bolivia: a new biomarker of exposure to dengue vector bites. Am J Trop Med Hyg 2012, 87(3):504-510.
  文献评价指标  
  下载次数:19次 浏览次数:29次