期刊论文详细信息
Clinical Epigenetics
Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis
Paolo Vineis3  James M. Flanagan4  Torkjel M. Sandanger8  Montserrat Garcia-Closas1,10  Eiliv Lund8  Marc Chadeau-Hyam9  Anthony Swerdlow6  Alan Ashworth1,10  Michael E. Jones5  Katarzyna Tomczyk6  Nicholas Orr6  Ed Curry4  Kirsty Flower4  Graziella Frasca1  Rosario Tumino1  Claudia Agnoli2  Vittorio Krogh2  Giovanna Masala1,11  Domenico Palli1,11  Amalia Mattiello7  Salvatore Panico7  Carlotta Sacerdote3  Gianluca Severi3  Laura Baglietto3  Silvia Polidoro3  Karin van Veldhoven3 
[1] Cancer Registry ASP, Ragusa, Italy;Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy;HuGeF Foundation, 52, Via Nizza, Torino 10126, Italy;Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK;Division of Breast Cancer Research, The Institute of Cancer Research, London, UK;Departimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy;Department of Community Medicine, UiT—the Arctic University of Norway, Tromsø, Norway;MRC-PHE Centre for Environment and Health, Imperial College London, London W2 1PG, UK;Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK;Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute—ISPO, Florence, Italy
关键词: Peripheral blood;    Breast cancer;    Biomarker;    Risk;    Methylation;    EWAS;   
Others  :  1225922
DOI  :  10.1186/s13148-015-0104-2
 received in 2015-04-01, accepted in 2015-06-29,  发布年份 2015
PDF
【 摘 要 】

Background

Interest in the potential of DNA methylation in peripheral blood as a biomarker of cancer risk is increasing. We aimed to assess whether epigenome-wide DNA methylation measured in peripheral blood samples obtained before onset of the disease is associated with increased risk of breast cancer. We report on three independent prospective nested case-control studies from the European Prospective Investigation into Cancer and Nutrition (EPIC-Italy; n = 162 matched case-control pairs), the Norwegian Women and Cancer study (NOWAC; n = 168 matched pairs), and the Breakthrough Generations Study (BGS; n = 548 matched pairs). We used the Illumina 450k array to measure methylation in the EPIC and NOWAC cohorts. Whole-genome bisulphite sequencing (WGBS) was performed on the BGS cohort using pooled DNA samples, combined to reach 50× coverage across ~16 million CpG sites in the genome including 450k array CpG sites. Mean β values over all probes were calculated as a measurement for epigenome-wide methylation.

Results

In EPIC, we found that high epigenome-wide methylation was associated with lower risk of breast cancer (odds ratio (OR) per 1 SD = 0.61, 95 % confidence interval (CI) 0.47–0.80; −0.2 % average difference in epigenome-wide methylation for cases and controls). Specifically, this was observed in gene bodies (OR = 0.51, 95 % CI 0.38–0.69) but not in gene promoters (OR = 0.92, 95 % CI 0.64–1.32). The association was not replicated in NOWAC (OR = 1.03 95 % CI 0.81–1.30). The reasons for heterogeneity across studies are unclear. However, data from the BGS cohort was consistent with epigenome-wide hypomethylation in breast cancer cases across the overlapping 450k probe sites (difference in average epigenome-wide methylation in case and control DNA pools = −0.2 %).

Conclusions

We conclude that epigenome-wide hypomethylation of DNA from pre-diagnostic blood samples may be predictive of breast cancer risk and may thus be useful as a clinical biomarker.

【 授权许可】

   
2015 van Veldhoven et al.

【 预 览 】
附件列表
Files Size Format View
20150922091557179.pdf 809KB PDF download
Fig. 3. 27KB Image download
Fig. 2. 11KB Image download
Fig. 1. 22KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983, 301(5895):89-92.
  • [2]Feinberg AP, Vogelstein B: Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 1983, 111(1):47-54.
  • [3]Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, et al.: The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 1983, 11(19):6883-94.
  • [4]Cheung HH, Lee TL, Rennert OM, Chan WY: DNA methylation of cancer genome. Birth Defects Research Part C: Embryo Today 2009, 87(4):335-50.
  • [5]Esteller M: Dormant hypermethylated tumour suppressor genes: questions and answers. J Pathol 2005, 205(2):172-80.
  • [6]Ehrlich M: DNA hypomethylation in cancer cells. Epigenomics 2009, 1(2):239-59.
  • [7]Nishiyama R, Qi L, Tsumagari K, Weissbecker K, Dubeau L, Champagne M, et al.: A DNA repeat, NBL2, is hypermethylated in some cancers but hypomethylated in others. Cancer Biology & Therapy 2005, 4(4):440-8.
  • [8]Grunau C, Brun ME, Rivals I, Selves J, Hindermann W, Favre-Mercuret M, et al.: BAGE hypomethylation, a new epigenetic biomarker for colon cancer detection. Cancer Epidemiol Biomark Prev 2008, 17(6):1374-9.
  • [9]Lindsey JC, Lusher ME, Anderton JA, Gilbertson RJ, Ellison DW, Clifford SC: Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br J Cancer 2007, 97(2):267-74.
  • [10]Wasson GR, McGlynn AP, McNulty H, O’Reilly SL, McKelvey-Martin VJ, McKerr G, et al.: Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. The Journal of Nutrition 2006, 136(11):2748-53.
  • [11]Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, et al.: Increased methylation variation in epigenetic domains across cancer types. Nat Genet 2011, 43(8):768-75.
  • [12]Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al.: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009, 41(2):178-86.
  • [13]Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al.: Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 2011, 6(6):692-702.
  • [14]Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M, et al.: Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Res 2010, 30(7):2489-96.
  • [15]Choi JY, James SR, Link PA, McCann SE, Hong CC, Davis W, et al.: Association between global DNA hypomethylation in leukocytes and risk of breast cancer. Carcinogenesis 2009, 30(11):1889-97.
  • [16]Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A, et al.: Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 2012, 72(9):2304-13.
  • [17]Iwamoto T, Yamamoto N, Taguchi T, Tamaki Y, Noguchi S: BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat 2011, 129(1):69-77.
  • [18]Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA, et al.: Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prevention Research 2011, 4(1):23-33.
  • [19]Brennan K, Flanagan JM: Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prevention Research 2012, 5(12):1345-57.
  • [20]Li L, Choi JY, Lee KM, Sung H, Park SK, Oze I, et al.: DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. Journal of Epidemiology 2012, 22(5):384-94.
  • [21]Rakyan VK, Down TA, Balding DJ, Beck S: Epigenome-wide association studies for common human diseases. Nat Rev Genet 2011, 12(8):529-41.
  • [22]Verma M: Epigenome-wide association studies (EWAS) in cancer. Current Genomics 2012, 13(4):308-13.
  • [23]Severi G, Southey MC, English DR, Jung CH, Lonie A, McLean C, et al.: Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Res Treat 2014, 148(3):665-73.
  • [24]Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA: Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 2013, 105(10):694-700.
  • [25]Deroo LA, Bolick SC, Xu Z, Umbach DM, Shore D, Weinberg CR, et al.: Global DNA methylation and one-carbon metabolism gene polymorphisms and the risk of breast cancer in the Sister Study. Carcinogenesis 2014, 35(2):333-8.
  • [26]Nelson HH, Marsit CJ, Kelsey KT: Global methylation in exposure biology and translational medical science. Environ Health Perspect 2011, 119(11):1528-33.
  • [27]Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, et al.: Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet 2013, 22(5):843-51.
  • [28]Anjum S, Fourkala EO, Zikan M, Wong A, Gentry-Maharaj A, Jones A, et al.: A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival. Genome Medicine 2014, 6(6):47. BioMed Central Full Text
  • [29]Chu M, Siegmund KD, Hao QL, Crooks GM, Tavare S, Shibata D: Inferring relative numbers of human leucocyte genome replications. Br J Haematol 2008, 141(6):862-71.
  • [30]Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G: Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 2010, 11:137. BioMed Central Full Text
  • [31]Stolzenberg-Solomon RZ, Chang SC, Leitzmann MF, Johnson KA, Johnson C, Buys SS, et al.: Folate intake, alcohol use, and postmenopausal breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Am J Clin Nutr 2006, 83(4):895-904.
  • [32]Christensen BC, Kelsey KT, Zheng S, Houseman EA, Marsit CJ, Wrensch MR, et al.: Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet 2010., 6(7) Article ID e1001043
  • [33]Palli D, Berrino F, Vineis P, Tumino R, Panico S, Masala G, et al.: A molecular epidemiology project on diet and cancer: the EPIC-Italy prospective study. Design and baseline characteristics of participants. Tumori 2003, 89(6):586-93.
  • [34]Lund E, Kumle M, Braaten T, Hjartaker A, Bakken K, Eggen E, et al.: External validity in a population-based national prospective study—the Norwegian Women and Cancer Study (NOWAC). Cancer Causes Control 2003, 14(10):1001-8.
  • [35]Swerdlow AJ, Jones ME, Schoemaker MJ, Hemming J, Thomas D, Williamson J, et al.: The breakthrough generations study: design of a long-term UK cohort study to investigate breast cancer aetiology. Br J Cancer 2011, 105(7):911-7.
  • [36]Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17(6):520-5.
  • [37]Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8(1):118-27.
  • [38]Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F: Evaluation of the Infinium Methylation 450K technology. Epigenomics 2011, 3(6):771-84.
  • [39]Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al.: A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013, 29(2):189-96.
  • [40]Adalsteinsson BT, Gudnason H, Aspelund T, Harris TB, Launer LJ, Eiriksdottir G, et al.: Heterogeneity in white blood cells has potential to confound DNA methylation measurements. PLoS One 2012., 7(10) Article ID e46705
  • [41]Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, et al.: Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 2012., 7(7) Article ID e41361
  • [42]Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al.: DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012, 13:86. BioMed Central Full Text
  • [43]Houseman EA, Molitor J, Marsit CJ: Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 2014, 30(10):1431-9.
  • [44]Johnson MD, Mueller M, Game L, Aitman TJ: Single nucleotide analysis of cytosine methylation by whole-genome shotgun bisulfite sequencing. In Current protocols in molecular biology Edited by Ausube FM. 2012. Chapter 21:Unit21 3
  • [45]Cox MP, Peterson DA, Biggs PJ: SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 2010, 11:485. BioMed Central Full Text
  • [46]Krueger F, Andrews SR: Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27(11):1571-2.
  • [47]Gardiner-Garden M, Frommer M: CpG islands in vertebrate genomes. J Mol Biol 1987, 196(2):261-82.
  • [48]Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al.: High density DNA methylation array with single CpG site resolution. Genomics 2011, 98(4):288-95.
  • [49]Ferrari SLP, Cribari-Neto F: Beta regression for modelling rates and proportions. J Appl Stat 2004, 31(7):799-815.
  • [50]Whitehead J: Fitting Cox’s regression model to survival data using GLIM. J R Stat Soc: Ser C: Appl Stat 1980, 29(3):268-75.
  文献评价指标  
  下载次数:52次 浏览次数:19次