期刊论文详细信息
Cancer Cell International
Caspase-2 is involved in cell death induction by taxanes in breast cancer cells
Jan Kovář1  Iwao Ojima2  Ilaria Zanardi2  Julie Fidlerová1  Jan Šrámek1  Vlasta Němcová-Fürstová1  Dana Kopperová1  Kamila Balušíková1  Michael Jelínek1 
[1] Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic;Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA
关键词: Breast cancer cells;    Taxanes;    Cell death;    Caspase-2;   
Others  :  793889
DOI  :  10.1186/1475-2867-13-42
 received in 2013-01-18, accepted in 2013-05-01,  发布年份 2013
PDF
【 摘 要 】

Background

We studied the role of caspase-2 in apoptosis induction by taxanes (paclitaxel, novel taxane SB-T-1216) in breast cancer cells using SK-BR-3 (nonfunctional p53, functional caspase-3) and MCF-7 (functional p53, nonfunctional caspase-3) cell lines.

Results

Both taxanes induced apoptosis in SK-BR-3 as well as MCF-7 cells. Caspase-2 activity in SK-BR-3 cells increased approximately 15-fold within 48 h after the application of both taxanes at the death-inducing concentration (100 nM). In MCF-7 cells, caspase-2 activity increased approximately 11-fold within 60 h after the application of taxanes (300 nM). Caspase-2 activation was confirmed by decreasing levels of procaspase-2, increasing levels of cleaved caspase-2 and the cleavage of caspase-2 substrate golgin-160. The inhibition of caspase-2 expression using siRNA increased the number of surviving cells more than 2-fold in MCF-7 cells, and at least 4-fold in SK-BR-3 cells, 96 h after the application of death-inducing concentration of taxanes. The inhibition of caspase-2 expression also resulted in decreased cleavage of initiator caspases (caspase-8, caspase-9) as well as executioner caspases (caspase-3, caspase-7) in both cell lines after the application of taxanes. In control cells, caspase-2 seemed to be mainly localized in the nucleus. After the application of taxanes, it was released from the nucleus to the cytosol, due to the long-term disintegration of the nuclear envelope, in both cell lines. Taxane application led to some formation of PIDDosome complex in both cell lines within 24 h after the application. After taxane application, p21WAF1/CIP1 expression was only induced in MCF-7 cells with functional p53. However, taxane application did not result in a significant increase of PIDD expression in either SK-BR-3 or MCF-7 cells. The inhibition of RAIDD expression using siRNA did not affect the number of surviving SK-BR-3 and MCF-7 cells after taxane application at all.

Conclusion

Caspase-2 is required, at least partially, for apoptosis induction by taxanes in tested breast cancer cells. We suggest that caspase-2 plays the role of an apical caspase in these cells. Caspase-2 seems to be activated via other mechanism than PIDDosome formation. It follows the release of caspase-2 from the nucleus to the cytosol.

【 授权许可】

   
2013 Jelínek et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705060450243.pdf 2249KB PDF download
Figure 10. 59KB Image download
Figure 9. 25KB Image download
Figure 5. 160KB Image download
Figure 7. 30KB Image download
Figure 6. 103KB Image download
Figure 5. 56KB Image download
Figure 4. 107KB Image download
Figure 3. 91KB Image download
Figure 2. 27KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 5.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Choy H: Taxanes in combined modality therapy for solid tumors. Crit Rev Oncol Hematol 2001, 37:237-247.
  • [2]Galletti E, Magnani M, Renzulli ML, Botta M: Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. Chem Med Chem 2007, 2:920-942.
  • [3]Ojima I, Slater JC, Michaud E, Kuduk SD, Bounaud PY, Vrignaud P, Bissery MC, Veith JM, Pera P, Bernacki RJ: Syntheses and structure-activity relationships of the second-generation antitumor taxoids: exceptional activity against drug-resistant cancer cells. J Med Chem 1996, 39:3889-3896.
  • [4]Ehrlichová M, Koc M, Truksa J, Naďová Z, Václavíková R, Kovář J: Cell death induced by taxanes in breast cancer cells: cytochrome C is released in resistant but not in sensitive cells. Anticancer Res 2005, 25:4215-4224.
  • [5]Ferlini C, Raspaglio G, Mozzetti S, Cicchillitti L, Filippetti F, Gallo D, Fattorusso C, Campiani G, Scambia G: The seco-taxane IDN5390 is able to target class III beta-tubulin and to overcome paclitaxel resistance. Cancer Res 2005, 65:2397-2405.
  • [6]Ojima I, Chen J, Sun L, Borella CP, Wang T, Miller ML, Lin S, Geng X, Kuznetsova L, Qu C, Gallager D, Zhao X, Zanardi I, Xia S, Horwitz SB, Mallen-StClair J, Guerriero JL, Bar-Sagi D, Veith JM, Pera P, Bernacki RJ: Design, synthesis, and biological evaluation of new-generation taxoids. J Med Chem 2008, 51:3203-3221.
  • [7]Vobořilová J, Němcová-Fürstová V, Neubauerová J, Ojima I, Zanardi I, Gut I, Kovář J: Cell death induced by novel fluorinated taxanes in drug-sensitive and drug-resistant cancer cells. Invest New Drugs 2011, 29:411-423.
  • [8]Spencer CM, Faulds D: Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 1994, 48:794-847.
  • [9]Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB: Mechanisms of taxol resistance related to microtubules. Oncogene 2003, 22:7280-7295.
  • [10]Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA: Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci USA 2006, 103:10166-10173.
  • [11]Jordan MA, Ojima I, Rosa F, Distefano M, Wilson L, Scambia G, Ferlini C: Effects of novel taxanes SB-T-1213 and IDN5109 on tubulin polymerization and mitosis. Chem Biol 2002, 9:93-101.
  • [12]Fan W: Possible mechanisms of paclitaxel-induced apoptosis. Biochem Pharmacol 1999, 57:1215-1221.
  • [13]Aoudjit F, Vuori K: Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 2001, 20:4995-5004.
  • [14]Kovář J, Ehrlichová M, Smejkalová B, Zanardi I, Ojima I, Gut I: Comparison of cell death-inducing effect of novel taxane SB-T-1216 and paclitaxel in breast cancer cells. Anticancer Res 2009, 29:2951-2960.
  • [15]Das GC, Holiday D, Gallardo R, Haas C: Taxol-induced cell cycle arrest and apoptosis: dose–response relationship in lung cancer cells of different wild-type p53 status and under isogenic condition. Cancer Lett 2001, 165:147-153.
  • [16]Sano D, Matsuda H, Ishiguro Y, Nishimura G, Kawakami M, Tsukuda M: Antitumor effects of IDN5109 on head and neck squamous cell carcinoma. Oncol Rep 2006, 15:329-334.
  • [17]Drago-Ferrante R, Santulli A, Di Fjord R, Giuliano M, Calvaruso G, Tesoriere G, Vento R: Low doses of paclitaxel potently induce apoptosis in human retinoblastoma Y79 cells by up-regulating E2F1. Int J Oncol 2008, 33:677-687.
  • [18]Mediavilla-Varela M, Pacheco FJ, Almaguel F, Perez J, Sahakian E, Daniels TR, Leoh LS, Padilla A, Wall NR, Lilly MB, De Leon M, Casiano CA: Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer 2009, 8:68. BioMed Central Full Text
  • [19]von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dörken B, Daniel PT: Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 2003, 22:2236-2247.
  • [20]Iwanaga N, Kamachi M, Aratake K, Izumi Y, Ida H, Tanaka F, Tamai M, Arima K, Nakamura H, Origuchi T, Kawakami A, Eguchi K: Regulation of alternative splicing of caspase-2 through an intracellular signaling pathway in response to pro-apoptotic stimuli. J Lab Clin Med 2005, 145:105-110.
  • [21]Mhaidat NM, Wang Y, Kejda KA, Zhang XD, Hersey P: Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol Cancer Ther 2007, 6:752-761.
  • [22]Zhivotovsky B, Orrenius S: Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 2005, 331:859-867.
  • [23]Ho LH, Read SH, Dorstyn L, Lambrusco L, Kumar S: Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene 2008, 27:3393-3404.
  • [24]Tinel A, Tschopp J: The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004, 304:843-846.
  • [25]Baptiste-Okoh N, Barsotti AM, Prives CA: Role for caspase 2 and PIDD in the process of p53-mediated apoptosis. Proc Natl Acad Sci USA 2008, 105:1937-1942.
  • [26]Cuenin S, Tinel A, Janssens S, Tschopp J: p53-induced protein with a death domain (PIDD) isoforms differentially activate nuclear factor-kappa B and caspase-2 in response to genotoxic stress. Oncogene 2008, 27:387-396.
  • [27]Mansilla S, Priebe W, Portugal J: Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 2006, 5:53-60.
  • [28]Manzl C, Krumschnabel G, Bock F, Sohm B, Labi V, Baumgartner F, Logette E, Tschopp J, Villunger A: Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol 2009, 185:291-303.
  • [29]Dass CR, Galloway SJ, Choong PF: Dz13, a c-jun DNAzyme, is a potent inducer of caspase-2 activation. Oligonucleotides 2010, 20:137-146.
  • [30]Thomas CG, Strom A, Lindberg K, Gustafsson JA: Estrogen receptor beta decreases survival of p53-defective cancer cells after DNA damage by impairing G2/M checkpoint signaling. Breast Cancer Res Treat 2011, 127:417-427.
  • [31]Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, Rosen A: Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 2000, 149:603-612.
  • [32]Lassus P, Opitz-Araya X, Lazebnik Y: Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002, 297:1352-1354.
  • [33]Enoksson M, Robertson JD, Gogvadze V, Bu P, Kropotov A, Zhivotovsky B, Orrenius S: Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 2004, 279:49575-49578.
  • [34]Chen H, Chung S, Sukumar S: HOXA5-induced apoptosis in breast cancer cells is mediated by caspases 2 and 8. Mol Cell Biol 2004, 24:924-935.
  • [35]Das S, Nwachukwu JC, Li D, Vulin AI, Martinez-Caballero S, Kinnally KW, Samuels HH: The nuclear receptor interacting factor-3 transcriptional coregulator mediates rapid apoptosis in breast cancer cells through direct and bystander-mediated events. Cancer Res 2007, 67:1775-1782.
  • [36]Luparello C, Sirchia R, Lo Sasso B: Midregion PTHrP regulates Rip1 and caspase expression in MDA-MB231 breast cancer cells. Brest Cancer Res Treat 2007, 111:461-474.
  • [37]Wang YF, Chen CY, Chung SF, Chiou YH, Lo HR: Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother Pharmacol 2004, 54:322-330.
  • [38]Fabbri F, Amadori D, Carloni S, Brigliadori G, Tesei A, Ulivi P, Rosetti M, Vannini I, Arienti C, Zoli W, Silvestrini R: Mitotic catastrophe and apoptosis induced by docetaxel in hormone-refractory prostate cancer cells. J Cell Physiol 2008, 217:494-501.
  • [39]Papanikolaou V, Iliopoulos D, Dimou I, Dubos S, Tsougos I, Theodorou K, Kitsiou-Tzeli S, Tsezou A: The involvement of HER2 and p53 status in the regulation of telomerase in irradiated breast cancer cells. Int J Oncol 2009, 35:1141-1149.
  • [40]Friedrich K, Wieder T, Von Haefen C, Radetzki S, Jänicke R, Schulze-Osthoff K, Dörken B: Daniel, PT: Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene 2001, 20:2749-2760.
  • [41]Maillard MC, Brookfield FA, Courtney SM, Eustache FM, Gemkow MJ, Handel RK, Johnson LC, Johnson PD, Kerry MA, Krieger F, Meniconi M, Muñoz-Sanjuán I, Palfrey JJ, Park H, Schaertl S, Taylor MG, Weddell D, Dominguez C: Exploiting differences in caspase-2 and -3 Sz subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors. Bioorg Med Chem 2011, 19:5833-5851.
  • [42]Yang S, Thor AD, Edgerton S, Yang X: Caspase-3 mediated feedback activation of apical caspases in doxorubicin and TNF-alpha induced apoptosis. Apoptosis 2006, 11:1987-1997.
  • [43]Yuan SY, Hsu SL, Tsai KJ, Yang CR: Involvement of mitochondrial pathway in Taxol-induced apoptosis of human T24 bladder cancer cells. Urol Res 2002, 30:282-288.
  • [44]Luo Y, Ling Y, Guo W, Pang J, Liu W, Fang Y, Wen X, Wei K, Gao X: Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxel-induced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells. J Control Release 2010, 147:278-288.
  • [45]Samraj AK, Sohn D, Schulze-Osthoff K, Schmitz I: Loss of caspase-9 reveals its essential role for caspase-2 activation and mitochondrial membrane depolarization. Mol Biol Cell 2007, 18:84-93.
  • [46]Vakifahmetoglu-Norberg H, Zhivotovsky B: The unpredictable caspase-2: what can it do? Trends Cell Biol 2010, 20:150-159.
  • [47]Kitevska T, Spencer DM, Hawkins CJ: Caspase-2: controversial killer or checkpoint controller? Apoptosis 2009, 14:829-848.
  • [48]Han J, Kim S, Yang JH, Nam SJ, Lee JE: TPA-induced p21 expression augments G2/M arrest through a p53-independent mechanism in human breast cancer cells. Oncol Rep 2012, 27:517-522.
  • [49]Tinel A, Janssens S, Lippens S, Cuenin S, Logette E, Jaccard B, Quadroni M, Tschopp J: Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 2007, 26:197-208.
  • [50]Kim IR, Murakami K, Chen NJ, Saibil SD, Matysiak-Zablocki E, Elford AR, Bonnard M, Benchimol S, Jurisicova A, Yeh WC, Ohashi PS: DNA damage- and stress-induced apoptosis occurs independently of PIDD. Apoptosis 2009, 14:1039-1049.
  • [51]Olsson M, Vakifahmetoglu H, Abruzzo PM, Högstrand K, Grandien A, Zhivotovsky B: DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene 2009, 28:1949-1959.
  • [52]Kovář J, Valenta T, Štýbrová H: Differing sensitivity of tumor cells to apoptosis induced by iron deprivation in vitro. In Vitro Cell Dev Biol Anim 2001, 37:450-458.
  • [53]Musílková J, Kovář J: Additive stimulatory effect of extracellular calcium and potassium on non-transferrin ferric uptake by HeLa and K562 cells. Biochim Biophys Acta 2001, 1514:117-126.
  • [54]Němcová-Fürstová V, James RF, Kovář J: Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic β-cells: activation of caspases and ER stress induction. Cell Physiol Biochem 2011, 27:525-538.
  文献评价指标  
  下载次数:15次 浏览次数:12次