期刊论文详细信息
Journal of Ovarian Research
Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary
Nuzhat Ahmed2  Jock K Findlay2  Michael Quinn1  Chantel Samardzija1 
[1] Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3052, Australia;Prince Henry’s Institute of Medical Research, Melbourne, VIC, 3168, Australia
关键词: Induced pluripotent stem cells;    Embryonic stem cells;    Recurrence;    Chemoresistance;    Metastasis;    Cancer stem cell;    Ovarian carcinoma;   
Others  :  814833
DOI  :  10.1186/1757-2215-5-37
 received in 2012-08-15, accepted in 2012-10-30,  发布年份 2012
PDF
【 摘 要 】

Epithelial ovarian cancer (EOC) remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed ‘cancer initiating cells’ or ‘cancer stem cells (CSCs)’ have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.

【 授权许可】

   
2012 Samardzija et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710050000327.pdf 644KB PDF download
Figure 3. 71KB Image download
Figure 2. 26KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, et al.: Focus on epithelial ovarian cancer. Cancer Cell 2004, 5:19-24.
  • [2]Ovarian-cancer-facts.com C: Ovarian Cancer Statistics.
  • [3]Karst AM, Drapkin R: Ovarian cancer pathogenesis: a model in evolution. J Oncol 2010., 932371
  • [4]Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC: Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001, 22:255-288.
  • [5]Ozols RF: Systemic therapy for ovarian cancer: current status and new treatments. Semin Oncol 2006, 33:S3-11.
  • [6]Lengyel E: Ovarian cancer development and metastasis. Am J Pathol 2010, 177:1053-1064.
  • [7]Ahmed N, Thompson EW, Quinn MA: Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol 2007, 213:581-588.
  • [8]Hudson LG, Zeineldin R, Stack MS: Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 2008, 25:643-655.
  • [9]Ahmed N, Abubaker K, Findlay J, Quinn M: Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets 2010, 10:268-278.
  • [10]Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, Dobill F, et al.: Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem 2011, 112:2850-2864.
  • [11]Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, et al.: Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res 2012, 18:869-881.
  • [12]Kellner S, Kikyo N: Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histol Histopathol 2010, 25:405-412.
  • [13]Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al.: Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998, 95:379-391.
  • [14]Niwa H, Miyazaki J, Smith AG: Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000, 24:372-376.
  • [15]Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M: A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia 2007, 21:860-867.
  • [16]Shin DM, Liu R, Klich I, Ratajczak J, Kucia M, Ratajczak MZ: Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Mol Cells 2010, 29:533-538.
  • [17]Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, et al.: Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 2008, 76:843-856.
  • [18]Ratajczak MZ, Shin DM, Liu R, Marlicz W, Tarnowski M, Ratajczak J, et al.: Epiblast/germ line hypothesis of cancer development revisited: lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Rev 2010, 6:307-316.
  • [19]Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ, et al.: Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia 2009, 23:2042-2051.
  • [20]Ratajczak MZ, Suszynska M, Pedziwiatr D, Mierzejewska K, Greco NJ: Umbilical cord blood-derived very small embryonic like stem cells (VSELs) as a source of pluripotent stem cells for regenerative medicine. Pediatr Endocrinol Rev 2012, 9:639-643.
  • [21]Wojakowski W, Kucia M, Zuba-Surma E, Jadczyk T, Ksiazek B, Ratajczak MZ, et al.: Very small embryonic-like stem cells in cardiovascular repair. Pharmacol Ther 2011, 129:21-28.
  • [22]Ratajczak MZ, Shin DM, Ratajczak J, Kucia M, Bartke A: A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an Igf-1-dependent manner? Aging (Albany NY) 2010, 2:875-883.
  • [23]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
  • [24]Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, et al.: Direct reprogramming of human neural stem cells by OCT4. Nature 2009, 461:649-643.
  • [25]Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008, 26:1276-1284.
  • [26]Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
  • [27]Moon JH, Heo JS, Kim JS, Jun EK, Lee JH, Kim A, et al.: Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 2011, 21:1305-1315.
  • [28]Sterneckert J, Hoing S, Scholer HR: Concise review: Oct4 and more: the reprogramming expressway. Stem Cells 2012, 30:15-21.
  • [29]Stefanovic S, Puceat M: Oct-3/4: not just a gatekeeper of pluripotency for embryonic stem cell, a cell fate instructor through a gene dosage effect. Cell Cycle 2007, 6:8-10.
  • [30]Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, et al.: The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 2010, 6:167-174.
  • [31]Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al.: A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010, 7:51-63.
  • [32]Bernhardt M, Galach M, Novak D, Utikal J: Mediators of induced pluripotency and their role in cancer cells-current scientific knowledge and future perspectives. Biotechnol J 2012, 7:1-12.
  • [33]Hiyama E, Hiyama K: Telomere and telomerase in stem cells. Br J Cancer 2007, 96:1020-1024.
  • [34]Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al.: Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 2007, 25:207-215.
  • [35]Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al.: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008, 40:499-507.
  • [36]Ohm JE, Mali P, Van Neste L, Berman DM, Liang L, Pandiyan K, et al.: Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res 2010, 70:7662-7673.
  • [37]Calvanese V, Horrillo A, Hmadcha A, Suarez-Alvarez B, Fernandez AF, Lara E, et al.: Cancer genes hypermethylated in human embryonic stem cells. PLoS One 2008, 3:e3294.
  • [38]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al.: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282:1145-1147.
  • [39]Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B: Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun 2009, 383:157-162.
  • [40]Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, et al.: Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009, 41:843-848.
  • [41]Gidekel S, Pizov G, Bergman Y, Pikarsky E: Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 2003, 4:361-370.
  • [42]Hochedlinger K, Yamada Y, Beard C, Jaenisch R: Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005, 121:465-477.
  • [43]Zhao P-P, Liu C-X, Xu K, Zheng S-B, Li H-L, Xu Y-W, et al.: [Expression of OCT4 protein in bladder cancer and its clinicopathological implications]. Nan Fang Yi Ke Da Xue Xue Bao =. Journal Of Southern Medical University 2012, 32:643-646.
  • [44]Zhang X, Han B, Huang J, Zheng B, Geng Q, Aziz F, et al.: Prognostic significance of OCT4 expression in adenocarcinoma of the lung. Jpn J Clin Oncol 2010, 40:961-966.
  • [45]Huang P, Chen J, Wang L, Na Y, Kaku H, Ueki H, et al.: Implications of transcriptional factor, OCT-4, in human bladder malignancy and tumor recurrence. Medical Oncology (Northwood, London, England) 2012, 29:829-834.
  • [46]Rijlaarsdam MA, van Herk HADM, Gillis AJM, Stoop H, Jenster G, Martens J, et al.: Specific detection of OCT3/4 isoform A/B/B1 expression in solid (germ cell) tumours and cell lines: confirmation of OCT3/4 specificity for germ cell tumours. British Journal Of Cancer 2012, 105:854-863.
  • [47]He W, Li K, Wang F, Qin Y-R, Fan Q-X: Expression of OCT4 in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. World J Gastroentero 2012, 18:712-719.
  • [48]Chen Z, Wang T, Cai L, Su C, Zhong B, Lei Y, et al.: Clinicopathological significance of non-small cell lung cancer with high prevalence of Oct-4 tumor cells. J Exp Clin Canc Res 2012, 31:10-10. BioMed Central Full Text
  • [49]Karoubi G, Gugger M, Schmid R, Dutly A: OCT4 expression in human non-small cell lung cancer: implications for therapeutic intervention. Interactive Cardiovascular And Thoracic Surgery 2009, 8:393-397.
  • [50]Beltran AS, Rivenbark AG, Richardson BT, Yuan X, Quian H, Hunt JP, et al.: Generation of tumor-initiating cells by exogenous delivery of OCT4 transcription factor. Breast Cancer Res 2011, 13:R94. BioMed Central Full Text
  • [51]Kim RJ, Nam JS: OCT4 Expression Enhances Features of Cancer Stem Cells in a Mouse Model of Breast Cancer. Lab Anim Res 2011, 27:147-152.
  • [52]Chen Y-C, Hsu H-S, Chen Y-W, Tsai T-H, How C-K, Wang C-Y, et al.: Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008, 3:e2637-e2637.
  • [53]Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119:1420-1428.
  • [54]Guarino M, Rubino B, Ballabio G: The role of epithelial-mesenchymal transition in cancer pathology. Pathology 2007, 39:305-318.
  • [55]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-715.
  • [56]Floor S, van Staveren WC, Larsimont D, Dumont JE, Maenhaut C: Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 2011, 36:4609-21.
  • [57]Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, et al.: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 2010, 5:e12445.
  • [58]Chiou S-H, Wang M-L, Chou Y-T, Chen C-J, Hong C-F, Hsieh W-J, et al.: Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2012, 70:10433-10444.
  • [59]Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D, et al.: Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells. Biochem Biophys Res Commun 2011, 411:786-791.
  • [60]Linn DE, Yang X, Sun F, Xie Y, Chen H, Jiang R, et al.: A Role for OCT4 in Tumor Initiation of Drug-Resistant Prostate Cancer Cells. Genes & Cancer 2011, 1:908-916.
  • [61]Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, et al.: Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology (Baltimore, Md) 2010, 52:528-539.
  • [62]Tsai LL, Yu CC, Chang YC, Yu CH, Chou MY: Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. J Oral Pathol Med 2011, 40:621-628.
  • [63]Virant-Klun I, Stimpfel M, Skutella T: Ovarian pluripotent/multipotent stem cells and in vitro oogenesis in mammals. Histol Histopathol 2011, 26:1071-1082.
  • [64]Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K, et al.: Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 2011, 20:1451-1464.
  • [65]Bhartiya D, Sriraman K, Parte S: Stem cell interaction with somatic niche may hold the key to fertility restoration in cancer patients. Obstet Gynecol Int 2012., 921082
  • [66]Virant-Klun I, Rozman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rulicke T, et al.: Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev 2009, 18:137-149.
  • [67]Virant-Klun I, Skutella T, Stimpfel M, Sinkovec J: Ovarian surface epithelium in patients with severe ovarian infertility: a potential source of cells expressing markers of pluripotent/multipotent stem cells. J Biomed Biotechnol 2011., 381928
  • [68]Cheng L, Thomas A, Roth LM, Zheng W, Michael H, Karim FW: OCT4: a novel biomarker for dysgerminoma of the ovary. Am J Surg Pathol 2004, 28:1341-1346.
  • [69]Abiko K, Mandai M, Hamanishi J, Matsumura N, Baba T, Horiuchi A, et al.: Oct4 expression in immature teratoma of the ovary: relevance to histologic grade and degree of differentiation. Am J Surg Pathol 2010, 34:1842-1848.
  • [70]Zhang J, Li YL, Zhou CY, Hu YT, Chen HZ: Expression of octamer-4 in serous and mucinous ovarian carcinoma. J Clin Pathol 2010, 63:879-883.
  • [71]Kobel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, et al.: Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med 2008, 5:e232.
  • [72]Virant-Klun I, Skutella T, Cvjeticanin B, Stimpfel M, Sinkovec J: Serous papillary adenocarcinoma possibly related to the presence of primitive oocyte-like cells in the adult ovarian surface epithelium: a case report. J Ovarian Res 2011, 4:13. BioMed Central Full Text
  • [73]Bapat SA, Mali AM, Koppikar CB, Kurrey NK: Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 2005, 65:3025-3029.
  • [74]Hu L, McArthur C, Jaffe RB: Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 2010, 102:1276-1283.
  • [75]Vathipadiekal V, Saxena D, Mok SC, Hauschka PV, Ozbun L, Birrer MJ: Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer. PLoS One 2012, 7:e29079.
  • [76]Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D, et al.: Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther 2011, 10:325-335.
  • [77]Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K, Kiguchi K, et al.: Clinical significance of side population in ovarian cancer cells. Hum Cell 2011, 24:9-12.
  • [78]Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, et al.: Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 2009, 8:158-166.
  • [79]Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, et al.: Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 2009, 28:209-218.
  • [80]Gao MQ, Choi YP, Kang S, Youn JH, Cho NH: CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 2010, 29:2672-2680.
  • [81]Wang YC, Yo YT, Lee HY, Liao YP, Chao TK, Su PH, et al.: ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. Am J Pathol 2012, 180:1159-1169.
  • [82]Peng S, Maihle NJ, Huang Y: Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 2010, 29:2153-2159.
  • [83]Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J, et al.: Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS One 2012, 7:e46858.
  • [84]Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al.: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003, 113:631-642.
  • [85]Wang SH, Tsai MS, Chiang MF, Li H: A novel NK-type homeobox gene, ENK (early embryo specific NK), preferentially expressed in embryonic stem cells. Gene Expr Patterns 2003, 3:99-103.
  • [86]Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R: Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003, 17:126-140.
  • [87]Liang J, Wan M, Zhang Y, Gu P, Xin H, Jung SY, et al.: Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol 2008, 10:731-739.
  • [88]Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, et al.: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006, 38:431-440.
  • [89]Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, et al.: Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005, 280:24731-24737.
  • [90]Zuba-Surma EK, Kucia M, Dawn B, Guo Y, Ratajczak MZ, Bolli R: Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. J Mol Cell Cardiol 2008, 44:865-873.
  • [91]Drukala J, Paczkowska E, Kucia M, Mlynska E, Krajewski A, Machalinski B, et al.: Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev 2012, 8:184-194.
  • [92]Yin X, Li YW, Zhang BH, Ren ZG, Qiu SJ, Yi Y, et al.: Coexpression of stemness factors oct4 and nanog predict liver resection. Ann Surg Oncol 2012, 19:2877-2887.
  • [93]Wen J, Park JY, Park KH, Chung HW, Bang S, Park SW, et al.: Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas 2010, 39:622-626.
  • [94]Pan Y, Jiao J, Zhou C, Cheng Q, Hu Y, Chen H: Nanog is highly expressed in ovarian serous cystadenocarcinoma and correlated with clinical stage and pathological grade. Pathobiology 2010, 77:283-288.
  • [95]Ryan AK, Rosenfeld MG: POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 1997, 11:1207-1225.
  • [96]Wang X, Dai J: Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 2010, 28:885-893.
  • [97]Liedtke S, Stephan M, Kogler G: Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem 2008, 389:845-850.
  • [98]Lee J, Kim HK, Rho J-Y, Han Y-M, Kim J: The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem 2006, 281:33554-33565.
  • [99]Bilandzic M, Farnworth PG, Harrison C, Nicholls P, Wang Y, Escalona RM, Fuller PJ, Findlay JK, Stenvers KL: Loss of betaglycan contributes to the malignant properties of human granulosa tumor cells. Mol Endocrinol 2009, 23:539-548.
  • [100]Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, et al.: Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2007, 25:500-510.
  • [101]Xia H, Hui KM: MicroRNAs involved in regulating epithelial-mesenchymal transition and cancer stem cells as molecular targets for cancer therapeutics. Cancer Gene Ther 2012, 19:723-730.
  • [102]Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R: Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 2008, 40:1478-1483.
  • [103]Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, et al.: MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 2011, 286:17359-17364.
  • [104]Ma L, Lai D, Liu T, Cheng W, Guo L: Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochimica Et Biophysica Sinica 2011, 42:593-602.
  • [105]Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME: The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 2010, 17:F19-36.
  • [106]Gunaratne PH: Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Curr Stem Cell Res Ther 2009, 4:168-177.
  • [107]Wong SS, Ritner C, Ramachandran S, Aurigui J, Pitt C, Chandra P, et al.: miR-125b promotes early germ layer specification through Lin28/let-7d and preferential differentiation of mesoderm in human embryonic stem cells. PLoS One 2012, 7:36121.
  • [108]Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L: Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem 2010, 285:41961-41971.
  • [109]van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA: MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol 2010, 42:1282-1290.
  • [110]Helland A, Anglesio MS, George J, Cowin PA, Johnstone CN, House CM, et al.: Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers. PLoS One 2011, 6:e18064.
  • [111]Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, et al.: MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008, 68:10307-10314.
  • [112]Boyerinas B, Park SM, Murmann AE, Gwin K, Montag AG, Zillhardt M, et al.: Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int J Cancer 2012, 130:1787-1797.
  • [113]Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, et al.: Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 2008, 105:3903-3908.
  • [114]Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, et al.: Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 2011, 13:215-222.
  • [115]Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, et al.: Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 2011, 108:7838-7843.
  • [116]Ruiz-Vela A, Aguilar-Gallardo C, Martinez-Arroyo AM, Soriano-Navarro M, Ruiz V, Simon C: Specific unsaturated fatty acids enforce the transdifferentiation of human cancer cells toward adipocyte-like cells. Stem Cell Rev 2011, 7:898-909.
  • [117]Zhang GY, Ahmed N, Riley C, Oliva K, Barker G, Quinn MA, et al.: Enhanced expression of peroxisome proliferator-activated receptor gamma in epithelial ovarian carcinoma. Br J Cancer 2005, 92:113-119.
  • [118]Vignati S, Albertini V, Rinaldi A, Kwee I, Riva C, Oldrini R, et al.: Cellular and molecular consequences of peroxisome proliferator-activated receptor-gamma activation in ovarian cancer cells. Neoplasia 2006, 8:851-861.
  文献评价指标  
  下载次数:22次 浏览次数:130次