期刊论文详细信息
Journal of Neuroinflammation
Chronic oral administration of minocycline to sheep with ovine CLN6 neuronal ceroid lipofuscinosis maintains pharmacological concentrations in the brain but does not suppress neuroinflammation or disease progression
David N Palmer1  Graham W Kay1 
[1] Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
关键词: Ovine model;    Neuroinflammation;    Neurodegeneration;    NCL;    HPLC;    CSF;    Cortical atrophy;    Cerebrospinal fluid;    Batten disease;    Anti-inflammatory drugs;   
Others  :  1152469
DOI  :  10.1186/1742-2094-10-97
 received in 2013-03-11, accepted in 2013-07-16,  发布年份 2013
PDF
【 摘 要 】

Background

The neuronal ceroid lipofuscinoses (NCLs; or Batten disease) are fatal inherited human neurodegenerative diseases affecting an estimated 1:12,500 live births worldwide. They are caused by mutations in at least 11 different genes. Currently, there are no effective treatments. Progress into understanding pathogenesis and possible therapies depends on studying animal models. The most studied animals are the CLN6 South Hampshire sheep, in which the course of neuropathology closely follows that in affected children. Neurodegeneration, a hallmark of the disease, has been linked to neuroinflammation and is consequent to it. Activation of astrocytes and microglia begins prenatally, starting from specific foci associated with the later development of progressive cortical atrophy and the development of clinical symptoms, including the occipital cortex and blindness. Both neurodegeneration and neuroinflammation generalize and become more severe with increasing age and increasing clinical severity. The purpose of this study was to determine if chronic administration of an anti-inflammatory drug, minocycline, from an early age would halt or reverse the development of disease.

Method

Minocycline, a tetracycline family antibiotic with activity against neuroinflammation, was tested by chronic oral administration of 25 mg minocycline/kg/day to presymptomatic lambs affected with CLN6 NCL at 3 months of age to 14 months of age, when clinical symptoms are obvious, to determine if this would suppress neuroinflammation or disease progression.

Results

Minocycline was absorbed without significant rumen biotransformation to maintain pharmacological concentrations of 1 μM in plasma and 400 nM in cerebrospinal fluid, but these did not result in inhibition of microglial activation or astrocytosis and did not change the neuronal loss or clinical course of the disease.

Conclusion

Oral administration is an effective route for drug delivery to the central nervous system in large animals, and model studies in these animals should precede highly speculative procedures in humans. Minocycline does not inhibit a critical step in the neuroinflammatory cascade in this form of Batten disease. Identification of the critical steps in the neuroinflammatory cascade in neurodegenerative diseases, and targeting of specific drugs to them, will greatly increase the likelihood of success.

【 授权许可】

   
2013 Kay and Palmer; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406175751463.pdf 773KB PDF download
Figure 3. 137KB Image download
Figure 2. 45KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Rider JA, Rider DL: Batten disease: past, present, and future. Am J Med Genet 1988, Suppl 5:21-26.
  • [2]Kousi M, Lehesjoki AE, Mole SE: Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2012, 33:42-63.
  • [3]Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ: Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet 2012, 21:2646-2650.
  • [4]Nosková L, Stránecký V, Hartmannová H, Přistoupilová A, Barešová V, Ivánek R, Hůlková H, Jahnová H, van der Zee J, Staropoli JF, Sims KB, Tyynelä J, Van Broeckhoven C, Nijssen PC, Mole SE, Elleder M, Kmoch S: Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet 2011, 89:241-252.
  • [5]Smith KR, Dah HHM, Canafoglia L, Andermann E, Damiano J, Morbin M, Bruni AC, Giaccone G, Cossette P, Saftig P, Grötzinger J, Schwake M, Andermann F, Staropoli JF, Sims KB, Mole SE, Franceschetti S, Alexander NA, Cooper JD, Chapman HA, Carpenter S, Berkovic SF, Bahlo M: Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet 2013, 22:1417-1423.
  • [6]Tammen I, Houweling PJ, Frugier T, Mitchell NL, Kay GW, Cavanagh JAL, Cook RW, Raadsma HW, Palmer DN: A missense mutation (c.184C > T) in ovine CLN6 causes neuronal ceroid lipofuscinosis in Merino sheep whereas affected South Hampshire sheep have reduced levels of CLN6 mRNA. Biochim Biophys Acta 2006, 1762:898-905.
  • [7]Palmer DN, Martinus RD, Cooper SM, Midwinter GG, Reid JC, Jolly RD: Ovine ceroid-lipofuscinosis. The major lipopigment protein and the lipid-binding subunit of mitochondrial ATP synthase have the same NH2-terminal sequence. J Biol Chem 1989, 264:5736-5740.
  • [8]Palmer DN, Fearnley IM, Walker JE, Hall NA, Lake BD, Wolfe LS, Haltia M, Martinus RD, Jolly RD: Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease). Am J Med Genet 1992, 42:561-567.
  • [9]Chen R, Fearnley IM, Palmer DN, Walker JE: Lysine 43 is trimethylated in subunit c from bovine mitochondrial ATP synthase and in storage bodies associated with Batten disease. J Biol Chem 2004, 279:21883-21887.
  • [10]Palmer DN, Tammen I, Drögemüller C, Johnson GS, Katz ML, Lingaas F: Large animal models. In The neuronal ceroid lipofuscinoses (Batten disease). 2nd edition. Edited by Mole SE, Williams RE, Goebel HH. New York: Oxford University Press; 2011:284-320.
  • [11]Oswald MJ, Palmer DN, Kay GW, Barwell KJ, Cooper JD: Location and connectivity determine GABAergic interneuron survival in the brains of South Hampshire sheep with CLN6 neuronal ceroid lipofuscinosis. Neurobiol Dis 2008, 32:50-65.
  • [12]Oswald MJ, Palmer DN, Kay GW, Shemilt SJA, Rezaie P, Cooper JD: Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6). Neurobiol Dis 2005, 20:49-63.
  • [13]Kay GW, Palmer DN, Rezaie P, Cooper JD: Activation of non-neuronal cells within the prenatal developing brain of sheep with neuronal ceroid lipofuscinosis. Brain Pathol 2006, 16:110-116.
  • [14]Raivich G, Bohatschek M, Kloss CUA, Werner A, Jones LL, Kreutzberg GW: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 1999, 30:77-105.
  • [15]Stoll G, Jander S: The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999, 58:233-247.
  • [16]Streit WJ, Mrak RE, Griffin WST: Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 2004, 1:14. BioMed Central Full Text
  • [17]Neumann H: Control of glial immune function by neurons. Glia 2001, 36:191-199.
  • [18]Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJM, van Gool WA, Hoozemans JJM: The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 2006, 113:1685-1695.
  • [19]Kim YS, Joh TH: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 2006, 38:333-347.
  • [20]Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M: Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 2004, 17:359-366.
  • [21]Kim HS, Suh YH: Minocycline and neurodegenerative diseases. Behav Brain Res 2009, 196:168-179.
  • [22]Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci (USA) 1998, 95:15769-15774.
  • [23]Reinebrant HE, Wixey JA, Buller KM: Disruption of raphé serotonergic neural projections to the cortex: a potential pathway contributing to remote loss of brainstem neurons following neonatal hypoxic-ischemic brain injury. Eur J Neurosci 2012, 36:3483-3491.
  • [24]Kovesdi E, Kamnaksh A, Wingo D, Ahmed F, Grunberg NE, Long JB, Kasper CE, Agoston DV: Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Front Neurol 2012, 3:111.
  • [25]Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC: Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation 2012, 9:62. BioMed Central Full Text
  • [26]Kalonia H, Mishra J, Kumar A: Targeting neuro-inflammatory cytokines and oxidative stress by minocycline attenuates quinolinic-acid-induced Huntington’s disease-like symptoms in rats. Neurotox Res 2012, 22:310-320.
  • [27]Pijpers A, Schoevers EJ, Haagsma N, Verheijden JH: Plasma levels of oxytetracycline, doxycycline, and minocycline in pigs after oral administration in feed. J Anim Sci 1991, 69:4512-4522.
  • [28]Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, Hess DC: Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Expt Neurol 2004, 186:248-251.
  • [29]Böcker RH, Peter R, Machbert G, Bauer W: Identification and determination of the two principal metabolites of minocycline in humans. J Chromatogr 1991, 568:363-374.
  • [30]Agwuh KN, MacGowan A: Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 2006, 58:256-265.
  • [31]Barza M, Brown RB, Shanks C, Gamble C, Weinstein L: Relation between lipophilicity and pharmacological behaviour of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs. Antimicrob Agents Chemother 1975, 8:713-720.
  • [32]Aronson AL: Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc 1980, 176:1061-1068.
  • [33]Kremlev SG, Roberts RL, Palmer C: Differential expression of cytokines and chemokine receptors during microglial activation and inhibition. J Neuroimmunol 2004, 149:1-9.
  • [34]Tikka TM, Koistinaho JE: Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001, 166:7527-7533.
  • [35]Wang AL, Yu ACH, Lau LT, Lee C, Wu LM, Zhu XA, Tso MOM: Minocycline inhibits LPS-induced retinal microglia activation. Neurochem Internat 2005, 47:152-158.
  • [36]Graeber MB, Streit WJ: Microglia: biology and pathology. Acta Neuropathol 2010, 119:89-105.
  • [37]Streit WJ, Xue QS: Life and death of microglia. J Neuroimmune Pharmacol 2009, 4:371-379.
  • [38]Sriram K, Miller DB, O’Callaghan JP: Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-α. J Neurochem 2006, 96:706-718.
  • [39]Tomás-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL: Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 2004, 16:190-201.
  • [40]Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci (USA) 1999, 96:13496-13500.
  • [41]Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM: TNF-α knockout and minocycline treatment attenuates blood–brain barrier leakage in MPTP-treated mice. Neurobiol Dis 2007, 26:36-46.
  • [42]Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP: Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behaviour and anhedonia. J Neuroinflammation 2008, 5:15. BioMed Central Full Text
  • [43]Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002, 22:1763-1771.
  • [44]Boger HA, Middaugh LD, Granholm AC, McGinty JF: Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiol Dis 2009, 33:459-466.
  • [45]McGeer PL, McGeer EG: NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 2006, 28:639-647.
  • [46]Tuppo EE, Arias HR: The role of inflammation in Alzheimer’s disease. Internat J Biochem Cell Biol 2005, 37:289-305.
  • [47]Kielian T, Esen N, Lui S, Phulwani NK, Syed MM, Phillips N, Nishina K, Cheung AL, Schwartzman JD, Ruhe JJ: Minocycline modulates neuroinflammation independently of its antimicrobial activity in Staphylococcus aureus-induced brain abscess. Am J Pathol 2007, 171:1199-1214.
  • [48]Kay GW, Jay NP, Palmer DN: The specific loss of GnRH-positive neurons from the hypothalamus of sheep with CLN6 neuronal ceroid lipofuscinosis occurs without glial activation and has only minor effects on reproduction. Neurobiol Dis 2011, 41:614-623.
  • [49]Cooper JD: The neuronal ceroid lipofuscinoses: the same, but different? Biochem Soc Trans 2010, 38:1448-1452.
  • [50]Nibe K, Nakayama H, Uchida K: Comparative study of cerebellar degeneration in canine neuroaxonal dystrophy, cerebellar cortical abiotrophy, and neuronal ceroid-lipofuscinosis. J Vet Med Sci 2010, 72:1495-1499.
  • [51]Farfel-Becker T, Vitner EB, Pressey SNR, Eilam R, Cooper JD, Futerman AH: Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet 2011, 20:1375-1386.
  • [52]Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID: Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)α/βII. J Biol Chem 2007, 282:15208-15216.
  • [53]Dalm D, Palm GJ, Aleksandrov A, Simonson T, Hinrichs W: Nonantibiotic properties of tetracyclines: structural basis for inhibition of secretory phopholipase A2. J Mol Biol 2010, 398:83-96.
  • [54]Schildknecht S, Pape R, Müller N, Robotta M, Marquardt A, Bürkle A, Drescher M, Leist M: Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 2011, 286:4991-5002.
  • [55]Garwood CJ, Cooper JD, Hanger DP, Noble W: Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry 2010, 1(136):1-8.
  • [56]Schwarz H, Hickey C, Zimmerman C, Mazzoni P, Moskowitz C, Rosas D, McCall M, Sanchez-Ramos J, Perlmutter J, Wernle A, Higgins D, Nickerson C, Evans S, Kumar R, Miracle D, Dure L, Pendley D, Anderson K, Cines M, Ashizawa T, Stanton P, Fernandez H, Suelter M, Leavitt B, Decolongon J, Cudkowicz M, McDermott MP, Kieburtz K, Marshall F, Cha JH, Huntington Study Group DOMINO Investigators, et al.: A futility study of minocycline in Huntington’s disease. Mov Disord 2010, 25:2219-2224.
  文献评价指标  
  下载次数:40次 浏览次数:38次