Journal of Neuroinflammation | |
Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent on calreticulin/LRP phagocytic signalling | |
Guy C Brown1  María José Oliva-Martín1  Michael Fricker2  | |
[1] Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK;Present address: HMRI, University of Newcastle, Newcastle upon Tyne, NSW, Australia | |
关键词: Phagoptosis; Cell death; Neurodegeneration; Amyloid; Inflammation; LRP; Calreticulin; Microglia; Neuron; Phagocytosis; | |
Others : 1160298 DOI : 10.1186/1742-2094-9-196 |
|
received in 2012-03-27, accepted in 2012-06-11, 发布年份 2012 | |
【 摘 要 】
Background
Microglia are resident brain macrophages that can phagocytose dead, dying or viable neurons, which may be beneficial or detrimental in inflammatory, ischaemic and neurodegenerative brain pathologies. Cell death caused by phagocytosis of an otherwise viable cell is called ‘primary phagocytosis’ or ‘phagoptosis’. Calreticulin (CRT) exposure on the surface of cancer cells can promote their phagocytosis via LRP (low-density lipoprotein receptor-related protein) on macrophages, but it is not known whether this occurs with neurons and microglia.
Methods
We used primary cultures of cerebellar neurons, astrocytes and microglia to investigate the potential role of CRT/LRP phagocytic signalling in the phagocytosis of viable neurons by microglia stimulated with lipopolysaccharide (LPS) or nanomolar concentrations of amyloid-β peptide1-42 (Aβ). Exposure of CRT on the neuronal surface was investigated using surface biotinylation and western blotting. A phagocytosis assay was also developed using BV2 and PC12 cell lines to investigate CRT/LRP signalling in microglial phagocytosis of apoptotic cells.
Results
We found that BV2 microglia readily phagocytosed apoptotic PC12 cells, but this was inhibited by a CRT-blocking antibody or LRP-blocking protein (receptor-associated protein: RAP). Activation of primary rat microglia with LPS or Aβ resulted in loss of co-cultured cerebellar granule neurons, and this was blocked by RAP or antibodies against CRT or against LRP, preventing all neuronal loss and death. CRT was present on the surface of viable neurons, and this exposure did not change in inflammatory conditions. CRT antibodies prevented microglia-induced neuronal loss when added to neurons, while LRP antibodies prevented neuronal loss when added to the microglia. Pre-binding of CRT to neurons promoted neuronal loss if activated microglia were added, but pre-binding of CRT to microglia or both cell types prevented microglia-induced neuronal loss.
Conclusions
CRT exposure on the surface of viable or apoptotic neurons appears to be required for their phagocytosis via LRP receptors on activated microglia, but free CRT can block microglial phagocytosis of neurons by acting on microglia. Phagocytosis of CRT-exposing neurons by microglia can be a direct cause of neuronal death during inflammation, and might therefore contribute to neurodegeneration and be prevented by blocking the CRT/LRP pathway.
【 授权许可】
2012 Fricker et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150410101455283.pdf | 1825KB | download | |
Figure 6. | 28KB | Image | download |
Figure 5. | 30KB | Image | download |
Figure 4. | 76KB | Image | download |
Figure 3. | 65KB | Image | download |
Figure 2. | 25KB | Image | download |
Figure 1. | 122KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461-553.
- [2]Brown GC, Neher JJ: Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 2010, 41:242-247.
- [3]Neher JJ, Neniskyte U, Brown GC: Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol 2012, 3:27.
- [4]Brown GC, Neher JJ: Eaten alive! Cell death by primary phagocytosis: ‘phagoptosis’. Trends in Biochem Sciin press
- [5]Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC: Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 2011, 186:4973-4983.
- [6]Neniskyte U, Neher JJ, Brown GC: Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 2011, 286:39904-39913.
- [7]Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC: MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 2012, 32:2657-2666.
- [8]Ravichandran KS: Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 2011, 35:445-455.
- [9]Elliott JI, Surprenant A, Marelli-Berg FM, Cooper JC, Cassady-Cain RL, Wooding C, Linton K, Alexander DR, Higgins CF: Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol 2005, 7:808-816.
- [10]Fischer K, Voelkl S, Berger J, Andreesen R, Pomorski T, Mackensen A: Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 2006, 108:4094-4101.
- [11]Jitkaew S, Witasp E, Zhang S, Kagan VE, Fadeel B: Induction of caspase- and reactive oxygen species-independent phosphatidylserine externalization in primary human neutrophils: role in macrophage recognition and engulfment. J Leukoc Biol 2009, 85:427-437.
- [12]Martins I, Kepp O, Galluzzi L, Senovilla L, Schlemmer F, Adjemian S, Menger L, Michaud M, Zitvogel L, Kroemer G: Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann N Y Acad Sci 2010, 1209:77-82.
- [13]Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, Weiskopf K, Willingham SB, Raveh T, Park CY, Majeti R, Weissman IL: Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010, 2:63ra94.
- [14]Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Métivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G: Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007, 13:54-61.
- [15]Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM: Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005, 123:321-334.
- [16]Kuraishi T, Manaka J, Kono M, Ishii H, Yamamoto N, Koizumi K, Shiratsuchi A, Lee BL, Higashida H, Nakanishi Y: Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Exp Cell Res 2007, 313:500-510.
- [17]Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, et al.: A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012, 31:1062-1079.
- [18]Ogden CA, de Cathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM: C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 2001, 194:781-795.
- [19]Park YJ, Liu G, Lorne EF, Zhao X, Wang J, Tsuruta Y, Zmijewski J, Abraham E: PAI-1 inhibits neutrophil efferocytosis. Proc Natl Acad Sci USA 2008, 105:11784-11789.
- [20]Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL: CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009, 138:271-285.
- [21]Kinsner A, Pilotto V, Deininger S, Brown GC, Coecke S, Hartung T, Bal-Price A: Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J Neurochem 2005, 95:1132-1143.
- [22]Wong HK, Fricker M, Wyttenbach A, Villunger A, Michalak EM, Strasser A, Tolkovsky AM: Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Mol Cell Biol 2005, 25:8732-8747.
- [23]Herz J, Goldstein JL, Strickland DK, Ho YK, Brown MS: 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J Biol Chem 1991, 266:21232-21238.
- [24]Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B: Caspase signalling controls microglia activation and neurotoxicity. Nature 2011, 472:319-324.
- [25]Murray PJ, Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723-737.
- [26]Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8:57-69.
- [27]Provias J, Jeynes B: Immunohistochemical detection of receptor-associated protein in normal human brain and Alzheimer’s disease. Patholog Res Int 2010, 2010:173496.
- [28]Reddien PW, Cameron S, Horvitz HR: Phagocytosis promotes programmed cell death in C. elegans. Nature 2001, 412:198-202.
- [29]Hoeppner DJ, Hengartner MO, Schnabel R: Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 2001, 412:202-206.
- [30]Rauch F, Prud’homme J, Arabian A, Dedhar S, St-Arnaud R: Heart, brain, and body wall defects in mice lacking calreticulin. Exp Cell Res 2000, 256:105-111.
- [31]Weil M, Jacobson MD, Raff MC: Is programmed cell death required for neural tube closure? Curr Biol 1997, 7:281-284.
- [32]Marzolo MP, von Bernhardi R, Bu G, Inestrosa NC: Expression of alpha(2)-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP) in rat microglial cells. J Neurosci Res 2000, 60:401-411.
- [33]Hossain MA, Murayama N, Oka T, Nakajima T: Evidence of [Ca(2+)]i elevation by anti-calreticulin immunoreactive protein in neurons. Neurosci Res 2000, 36:285-290.
- [34]Tarr JM, Young PJ, Morse R, Shaw DJ, Haigh R, Petrov PG, Johnson SJ, Winyard PG, Eggleton P: A mechanism of release of calreticulin from cells during apoptosis. J Mol Biol 2010, 401:799-812.
- [35]Cunningham TJ, Jing H, Wang Y, Hodge L: Calreticulin binding and other biological activities of survival peptide Y-P30 including effects of systemic treatment of rats. Exp Neurol 2000, 163:457-468.