Molecular Neurodegeneration | |
The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration | |
Peter Robin Hiesinger1  Ilya Bezprozvanny2  | |
[1] Department of Physiology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas 75390-9040, TX, USA;Laboratory of Molecular Neurodegeneration, St Petersburg State Polytechnical University, 195251, St Petersburg, Russia | |
关键词: Excitotoxicity; Calcineurin; Ataxia; Lysosomal storage disorder; Hereditary motor and sensory neuropathy; Huntington’s disease; Amyloid; Presenilin; Calcium; Alzheimer’s disease; Autophagy; Endosome; Neurodegeneration; | |
Others : 862265 DOI : 10.1186/1750-1326-8-23 |
|
received in 2013-04-11, accepted in 2013-07-05, 发布年份 2013 | |
【 摘 要 】
Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration.
【 授权许可】
2013 Bezprozvanny and Hiesinger; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725012559260.pdf | 925KB | download | |
109KB | Image | download | |
101KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Weinstein GD, McCullough JL, Ross P: Cell proliferation in normal epidermis. J Invest Dermatol 1984, 82:623-628.
- [2]Foller M, Huber SM, Lang F: Erythrocyte programmed cell death. IUBMB Life 2008, 60:661-668.
- [3]Gentile L, Cebria F, Bartscherer K: The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis Model Mech 2011, 4:12-19.
- [4]Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL: Retrograde axonal transport: pathways to cell death? Trends Neurosci 2010, 33:335-344.
- [5]Wang D, Chan CC, Cherry S, Hiesinger PR: Membrane trafficking in neuronal maintenance and degeneration. Cell Mol Life Sci 2012. [Epub ahead of print]
- [6]Sharma M, Burre J, Sudhof TC: CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 2011, 13:30-39.
- [7]Bezprozvanny I: Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009, 15:89-100.
- [8]Kumar A, Bodhinathan K, Foster TC: Susceptibility to Calcium Dysregulation during Brain Aging. Frontiers Aging Neurosci 2009, 1:2.
- [9]Coen K, Flannagan RS, Baron S, Carraro-Lacroix LR, Wang D, Vermeire W, Michiels C, Munck S, Baert V, Sugita S, et al.: Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J Cell Biol 2012, 198:23-35.
- [10]Decuypere JP, Bultynck G, Parys JB: A dual role for Ca(2+) in autophagy regulation. Cell Calcium 2011, 50:242-250.
- [11]Morgan AJ, Platt FM, Lloyd-Evans E, Galione A: Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 2011, 439:349-374.
- [12]Gomez-Suaga P, Churchill GC, Patel S, Hilfiker S: A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling. Biochem Soc Trans 2012, 40:1140-1146.
- [13]Unno T, Wakamori M, Koike M, Uchiyama Y, Ishikawa K, Kubota H, Yoshida T, Sasakawa H, Peters C, Mizusawa H, Watase K: Development of Purkinje cell degeneration in a knockin mouse model reveals lysosomal involvement in the pathogenesis of SCA6. Proc Natl Acad Sci USA 2012, 109:17693-17698.
- [14]Grimm C, Hassan S, Wahl-Schott C, Biel M: Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J Pharmacol Exp Ther 2012, 342:236-244.
- [15]Zuo Y, Yang G, Kwon E, Gan WB: Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 2005, 436:261-265.
- [16]Liston C, Cichon JM, Jeanneteau F, Jia Z, Chao MV, Gan WB: Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci 2013, 16:698-705.
- [17]Sudarov A, Gooden F, Tseng D, Gan WB, Ross ME: Lis1 controls dynamics of neuronal filopodia and spines to impact synaptogenesis and social behaviour. EMBO Mol Med 2013, 5:591-607.
- [18]Grillo FW, Song S, Teles-Grilo Ruivo LM, Huang L, Gao G, Knott GW, Maco B, Ferretti V, Thompson D, Little GE, De Paola V: Increased axonal bouton dynamics in the aging mouse cortex. Proc Natl Acad Sci USA 2013, 110:E1514-E1523.
- [19]Shi L, Fu AK, Ip NY: Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012, 35:441-453.
- [20]Collins CA, DiAntonio A: Synaptic development: insights from Drosophila. Curr Opin Neurobiol 2007, 17:35-42.
- [21]Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K: Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002, 420:788-794.
- [22]Schultz ML, Tecedor L, Chang M, Davidson BL: Clarifying lysosomal storage diseases. Trends Neurosci 2011, 34:401-410.
- [23]Sudhof TC, Rizo J: Synaptic Vesicle Exocytosis. Cold Spring Harb Perspect Biol 2011.
- [24]Uytterhoeven V, Kuenen S, Kasprowicz J, Miskiewicz K, Verstreken P: Loss of skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins. Cell 2011, 145:117-132.
- [25]Haberman A, Williamson WR, Epstein D, Wang D, Rina S, Meinertzhagen IA, Hiesinger PR: The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration. J Cell Biol 2012, 196:261-276.
- [26]Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S: Paralysis and early death in cysteine string protein mutants of Drosophila. Science 1994, 263:977-980.
- [27]Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Munoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Sudhof TC: The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 2004, 42:237-251.
- [28]Wheeler TC, Chin LS, Li Y, Roudabush FL, Li L: Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J Biol Chem 2002, 277:10273-10282.
- [29]Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, Forno LS, Kopito RR: Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci USA 2005, 102:13135-13140.
- [30]Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, et al.: HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007, 447:859-863.
- [31]Raiborg C, Stenmark H: The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009, 458:445-452.
- [32]Mabb AM, Ehlers MD: Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol 2010, 26:179-210.
- [33]Elias GM, Nicoll RA: Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol 2007, 17:343-352.
- [34]Newpher TM, Ehlers MD: Glutamate receptor dynamics in dendritic microdomains. Neuron 2008, 58:472-497.
- [35]Wang D, Hiesinger PR: Autophagy, neuron-specific degradation and neurodegeneration. Autophagy 2012, 8:711-713.
- [36]Wong E, Cuervo AM: Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2010, 2(12):a006734.
- [37]Ledesma MD, Martin MG, Dotti CG: Lipid changes in the aged brain: effect on synaptic function and neuronal survival. Prog Lipid Res 2012, 51:23-35.
- [38]Butler D, Nixon RA, Bahr BA: Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. Autophagy 2006, 2:234-237.
- [39]Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Current biology : CB 2007, 17:1561-1567.
- [40]Lee JA, Liu L, Gao FB: Autophagy defects contribute to neurodegeneration induced by dysfunctional ESCRT-III. Autophagy 2009, 5:1070-1072.
- [41]Banerjee R, Beal MF, Thomas B: Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci 2010, 33:541-549.
- [42]Yang Z, Klionsky DJ: Eaten alive: a history of macroautophagy. Nat Cell Biol 2010, 12:814-822.
- [43]Ravikumar B, Duden R, Rubinsztein DC: Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002, 11:1107-1117.
- [44]Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441:885-889.
- [45]Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
- [46]Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA: Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 2008, 28:6926-6937.
- [47]Wang T, Lao U, Edgar BA: TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J Cell Biol 2009, 186:703-711.
- [48]Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
- [49]Hernandez D, Torres CA, Setlik W, Cebrian C, Mosharov EV, Tang G, Cheng HC, Kholodilov N, Yarygina O, Burke RE, et al.: Regulation of presynaptic neurotransmission by macroautophagy. Neuron 2012, 74:277-284.
- [50]Torres CA, Sulzer D: Macroautophagy can press a brake on presynaptic neurotransmission. Autophagy 2012, 8:1540-1541.
- [51]Maday S, Wallace KE, Holzbaur EL: Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 2012, 196:407-417.
- [52]Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, Holstein GR, Yue Z: Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci 2012, 32:7585-7593.
- [53]Shen W, Ganetzky B: Autophagy promotes synapse development in Drosophila. J Cell Biol 2009, 187:71-79.
- [54]Dermaut B, Norga KK, Kania A, Verstreken P, Pan H, Zhou Y, Callaerts P, Bellen HJ: Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. J Cell Biol 2005, 170:127-139.
- [55]Chinchore Y, Mitra A, Dolph PJ: Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration. PLoS Genet 2009, 5:e1000377.
- [56]Akbar MA, Ray S, Kramer H: The SM protein Car/Vps33A regulates SNARE-mediated trafficking to lysosomes and lysosome-related organelles. Mol Biol Cell 2009, 20:1705-1714.
- [57]Lee JA, Gao FB: Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J Neurosci 2009, 29:8506-8511.
- [58]Isaacs AM, Johannsen P, Holm I, Nielsen JE, Consortium FR: Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res 2011, 8:246-251.
- [59]Chan CC, Epstein D, Hiesinger PR: Intracellular trafficking in Drosophila visual system development: a basis for pattern formation through simple mechanisms. Dev Neurobiol 2011, 71:1227-1245.
- [60]Lee S, Sato Y, Nixon RA: Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci 2011, 31:7817-7830.
- [61]Williamson WR, Wang D, Haberman AS, Hiesinger PR: A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors. J Cell Biol 2010, 189:885-899.
- [62]Williamson WR, Yang T, Terman JR, Hiesinger PR: Guidance receptor degradation is required for neuronal connectivity in the Drosophila nervous system. PLoS Biol 2010, 8:e1000553.
- [63]Nishi T, Forgac M: The vacuolar (H+)-ATPases–nature's most versatile proton pumps. Nat Rev Mol Cell Biol 2002, 3:94-103.
- [64]Sobota JA, Back N, Eipper BA, Mains RE: Inhibitors of the V0 subunit of the vacuolar H+−ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 2009, 122:3542-3553.
- [65]Stewart RS, Teng H, Wilkinson RS: "Late" macroendosomes and acidic endosomes in vertebrate motor nerve terminals. J Comp Neurol 2012, 520:4275-4293.
- [66]Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC, Kavalali ET: SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 2001, 294:1117-1122.
- [67]Broadie K, Prokop A, Bellen HJ, O'Kane CJ, Schulze KL, Sweeney ST: Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 1995, 15:663-673.
- [68]Bhattacharya S, Stewart BA, Niemeyer BA, Burgess RW, McCabe BD, Lin P, Boulianne G, O'Kane CJ, Schwarz TL: Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability. Proc Natl Acad Sci USA 2002, 99:13867-13872.
- [69]Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ: The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 2005, 121:607-620.
- [70]Xiong B, Bayat V, Jaiswal M, Zhang K, Sandoval H, Charng WL, Li T, David G, Duraine L, Lin YQ, et al.: Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol 2012, 10:e1001438.
- [71]Chan CC, Scoggin S, Wang D, Cherry S, Dembo T, Greenberg B, Jin EJ, Kuey C, Lopez A, Mehta SQ, et al.: Systematic discovery of Rab GTPases with synaptic functions in Drosophila. Current biology : CB 2011, 21:1704-1715.
- [72]Jin EJ, Chan CC, Agi E, Cherry S, Hanacik E, Buszczak M, Hiesinger PR: Similarities of Drosophila rab GTPases based on expression profiling: completion and analysis of the rab-Gal4 kit. PLoS One 2012. in press
- [73]Berridge MJ: Neuronal calcium signaling. Neuron 1998, 21:13-26.
- [74]Ernstrom GG, Weimer R, Pawar DR, Watanabe S, Hobson RJ, Greenstein D, Jorgensen EM: V-ATPase V1 sector is required for corpse clearance and neurotransmission in Caenorhabditis elegans. Genetics 2012, 191:461-475.
- [75]Nizami S, Lee VW, Davies J, Long P, Jovanovic JN, Sihra TS: Presynaptic roles of intracellular Ca(2+) stores in signalling and exocytosis. Biochem Soc Trans 2010, 38:529-535.
- [76]Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993, 361:31-39.
- [77]Trommald M, Hulleberg G, Andersen P: Long-term potentiation is associated with new excitatory spine synapses on rat dentate granule cells. Learn Mem 1996, 3:218-228.
- [78]Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML, Gabbott PL, Bliss TV, Stewart MG: Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Neuroscience 2004, 128:251-262.
- [79]Bourne J, Harris KM: Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 2007, 17:381-386.
- [80]Bourne JN, Harris KM: Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 2008, 31:47-67.
- [81]Matsuzaki M: Factors critical for the plasticity of dendritic spines and memory storage. Neurosci Res 2007, 57:1-9.
- [82]Zhou Q, Homma KJ, Poo MM: Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 2004, 44:749-757.
- [83]Lisman J, Raghavachari S: A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Science's STKE 2006, 2006:re11.
- [84]Murakoshi H, Yasuda R: Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 2012, 35:135-143.
- [85]Malenka RC, Bear MF: LTP and LTD: an embarrassment of riches. Neuron 2004, 44:5-21.
- [86]Lisman J, Yasuda R, Raghavachari S: Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 2012, 13:169-182.
- [87]Bito H, Deisseroth K, Tsien RW: CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 1996, 87:1203-1214.
- [88]Sanhueza M, Fernandez-Villalobos G, Stein IS, Kasumova G, Zhang P, Bayer KU, Otmakhov N, Hell JW, Lisman J: Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J Neurosci 2011, 31:9170-9178.
- [89]Kavalali ET, Chung C, Khvotchev M, Leitz J, Nosyreva E, Raingo J, Ramirez DM: Spontaneous neurotransmission: an independent pathway for neuronal signaling? Physiology (Bethesda) 2011, 26:45-53.
- [90]Putney JW Jr: Capacitative calcium entry in the nervous system. Cell Calcium 2003, 34:339-344.
- [91]Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, Ding Y, Wang Y: Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 2008, 11:741-743.
- [92]Popugaeva E, Supnet C, Bezprozvanny I: Presenilins, deranged calcium homeostasis, synaptic loss and dysfunction in Alzheimer’s disease. Messenger 2012, 1:53-62.
- [93]Association As: 2013 Alzheimer's disease facts and figures. Alzheimer's Dementia 2013, 9:208-245.
- [94]Song JW, Misgeld T, Kang H, Knecht S, Lu J, Cao Y, Cotman SL, Bishop DL, Lichtman JW: Lysosomal activity associated with developmental axon pruning. J Neurosci 2008, 28:8993-9001.
- [95]Sweeney ST, Davis GW: Unrestricted synaptic growth in spinster-a late endosomal protein implicated in TGF-beta-mediated synaptic growth regulation. Neuron 2002, 36:403-416.
- [96]Milton VJ, Jarrett HE, Gowers K, Chalak S, Briggs L, Robinson IM, Sweeney ST: Oxidative stress induces overgrowth of the Drosophila neuromuscular junction. Proc Natl Acad Sci USA 2011, 108:17521-17526.
- [97]Ginsberg SD, Alldred MJ, Counts SE, Cataldo AM, Neve RL, Jiang Y, Wuu J, Chao MV, Mufson EJ, Nixon RA, Che S: Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression. Biol Psychiatry 2010, 68:885-893.
- [98]Ginsberg SD, Mufson EJ, Counts SE, Wuu J, Alldred MJ, Nixon RA, Che S: Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer's disease. J Alzheimer's Dis 2010, 22:631-639.
- [99]Annaert W, De Strooper B: Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 1999, 22:439-443.
- [100]De Strooper B: Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 2003, 38:9-12.
- [101]Esselens C, Oorschot V, Baert V, Raemaekers T, Spittaels K, Serneels L, Zheng H, Saftig P, De Strooper B, Klumperman J, Annaert W: Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol 2004, 166:1041-1054.
- [102]Wilson CA, Murphy DD, Giasson BI, Zhang B, Trojanowski JQ, Lee VM: Degradative organelles containing mislocalized alpha-and beta-synuclein proliferate in presenilin-1 null neurons. J Cell Biol 2004, 165:335-346.
- [103]Zhang X, Garbett K, Veeraraghavalu K, Wilburn B, Gilmore R, Mirnics K, Sisodia SS: A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci 2012, 32:8633-8648.
- [104]Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, et al.: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141:1146-1158.
- [105]Neely KM, Green KN, LaFerla FM: Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a gamma-secretase-independent manner. J Neurosci 2011, 31:2781-2791.
- [106]Sannerud R, Annaert W: Trafficking, a key player in regulated intramembrane proteolysis. Semin Cell Dev Biol 2009, 20:183-190.
- [107]Rajendran L, Annaert W: Membrane trafficking pathways in Alzheimer's disease. Traffic 2012, 13:759-770.
- [108]Chia PZ, Gleeson PA: Intracellular trafficking of the beta-secretase and processing of amyloid precursor protein. IUBMB Life 2011, 63:721-729.
- [109]Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X, et al.: Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA 2005, 102:13461-13466.
- [110]Fjorback AW, Seaman M, Gustafsen C, Mehmedbasic A, Gokool S, Wu C, Militz D, Schmidt V, Madsen P, Nyengaard JR, et al.: Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci 2012, 32:1467-1480.
- [111]Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, et al.: Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci USA 2008, 105:7327-7332.
- [112]Lane RF, St George-Hyslop P, Hempstead BL, Small SA, Strittmatter SM, Gandy S: Vps10 family proteins and the retromer complex in aging-related neurodegeneration and diabetes. J Neurosci 2012, 32:14080-14086.
- [113]Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, et al.: The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 2006, 440:528-534.
- [114]Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG: Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis. J Neurosci Res 1998, 52:691-698.
- [115]Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL, Mori H: Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 2011, 89:1031-1042.
- [116]Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, et al.: ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 2004, 304:448-452.
- [117]Durakoglugil MS, Chen Y, White CL, Kavalali ET, Herz J: Reelin signaling antagonizes beta-amyloid at the synapse. Proc Natl Acad Sci USA 2009, 106:15938-15943.
- [118]Chen Y, Durakoglugil MS, Xian X, Herz J: ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci USA 2010, 107:12011-12016.
- [119]Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, et al.: Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 2010, 142:387-397.
- [120]Lee S, Wang JW, Yu W, Lu B: Phospho-dependent ubiquitination and degradation of PAR-1 regulates synaptic morphology and tau-mediated Abeta toxicity in Drosophila. Nat Commun 2012, 3:1312.
- [121]Ikin AF, Annaert WG, Takei K, De Camilli P, Jahn R, Greengard P, Buxbaum JD: Alzheimer amyloid protein precursor is localized in nerve terminal preparations to Rab5-containing vesicular organelles distinct from those implicated in the synaptic vesicle pathway. J Biol Chem 1996, 271:31783-31786.
- [122]Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, Zhou L, Veerle B, Coen K, Munck S, De Strooper B, et al.: ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci USA 2011, 108:E559-568.
- [123]Rajapaksha TW, Eimer WA, Bozza TC, Vassar R: The Alzheimer's beta-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Mol Neurodegener 2011, 6:88. BioMed Central Full Text
- [124]Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ: Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 2010, 330:1774.
- [125]Sieben A, Van Langenhove T, Engelborghs S, Martin JJ, Boon P, Cras P, De Deyn PP, Santens P, Van Broeckhoven C, Cruts M: The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 2012, 124:353-372.
- [126]Elliott JL, Kwon JM, Goodfellow PJ, Yee WC: Hereditary motor and sensory neuropathy IIB: clinical and electrodiagnostic characteristics. Neurology 1997, 48:23-28.
- [127]Meggouh F, Bienfait HM, Weterman MA, de Visser M, Baas F: Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene. Neurology 2006, 67:1476-1478.
- [128]Houlden H, King RH, Muddle JR, Warner TT, Reilly MM, Orrell RW, Ginsberg L: A novel RAB7 mutation associated with ulcero-mutilating neuropathy. Ann Neurol 2004, 56:586-590.
- [129]Verhoeven K, De Jonghe P, Coen K, Verpoorten N, Auer-Grumbach M, Kwon JM, FitzPatrick D, Schmedding E, De Vriendt E, Jacobs A, et al.: Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet 2003, 72:722-727.
- [130]Spinosa MR, Progida C, De Luca A, Colucci AM, Alifano P, Bucci C: Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease. J Neurosci 2008, 28:1640-1648.
- [131]Cogli L, Progida C, Thomas CL, Spencer-Dene B, Donno C, Schiavo G, Bucci C: Charcot-Marie-Tooth type 2B disease-causing RAB7A mutant proteins show altered interaction with the neuronal intermediate filament peripherin. Acta Neuropathol 2013, 125:257-272.
- [132]Zhang K, Fishel Ben Kenan R, Osakada Y, Xu W, Sinit RS, Chen L, Zhao X, Chen JY, Cui B, Wu C: Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J Neurosci 2013, 33:7451-7462.
- [133]McCray BA, Skordalakes E, Taylor JP: Disease mutations in Rab7 result in unregulated nucleotide exchange and inappropriate activation. Hum Mol Genet 2010, 19:1033-1047.
- [134]Xu S, Zhou S, Xia D, Xia J, Chen G, Duan S, Luo J: Defects of synaptic vesicle turnover at excitatory and inhibitory synapses in Niemann-Pick C1-deficient neurons. Neuroscience 2010, 167:608-620.
- [135]Rosenbaum AI, Maxfield FR: Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem 2011, 116:789-795.
- [136]Nixon RA, Yang DS: Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 2012, 4(10):a008839.
- [137]Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E: Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 2009, 18:4153-4170.
- [138]Ambegaokar SS, Jackson GR: Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011, 20:4947-4977.
- [139]Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J, Komatsu M, Abeliovich A: Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 2012, 7:48. BioMed Central Full Text
- [140]Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, Cuervo AM: Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 2010, 13:567-576.
- [141]Harrington AJ, Yacoubian TA, Slone SR, Caldwell KA, Caldwell GA: Functional analysis of VPS41-mediated neuroprotection in Caenorhabditis elegans and mammalian models of Parkinson's disease. J Neurosci 2012, 32:2142-2153.
- [142]MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A: RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 2013, 77:425-439.
- [143]Norris CM, Korol DL, Foster TC: Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging. J Neurosci 1996, 16:5382-5392.
- [144]Kumar A, Foster TC: Intracellular calcium stores contribute to increased susceptibility to LTD induction during aging. Brain Res 2005, 1031:125-128.
- [145]Norris CM, Halpain S, Foster TC: Alterations in the balance of protein kinase/phosphatase activities parallel reduced synaptic strength during aging. J Neurophysiol 1998, 80:1567-1570.
- [146]Gant JC, Sama MM, Landfield PW, Thibault O: Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+−induced Ca2+ release. J Neurosci 2006, 26:3482-3490.
- [147]Toescu EC, Verkhratsky A: The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell 2007, 6:267-273.
- [148]Foster TC, Sharrow KM, Masse JR, Norris CM, Kumar A: Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci 2001, 21:4066-4073.
- [149]Jouvenceau A, Dutar P: A role for the protein phosphatase 2B in altered hippocampal synaptic plasticity in the aged rat. J Physiol Paris 2006, 99:154-161.
- [150]Lian Q, Ladner CJ, Magnuson D, Lee JM: Selective changes of calcineurin (protein phosphatase 2B) activity in Alzheimer's disease cerebral cortex. Exp Neurol 2001, 167:158-165.
- [151]Qian W, Yin X, Hu W, Shi J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX, Liu F: Activation of protein phosphatase 2B and hyperphosphorylation of Tau in Alzheimer's disease. J Alzheimer's Dis 2011, 23:617-627.
- [152]Mohmmad Abdul H, Baig I, Levine H 3rd, Guttmann RP, Norris CM: Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Abeta in primary cell culture. Aging Cell 2011, 10:103-113.
- [153]Reese LC, Laezza F, Woltjer R, Taglialatela G: Dysregulated phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II-alpha in the hippocampus of subjects with mild cognitive impairment and Alzheimer's disease. J Neurochem 2011, 119:791-804.
- [154]Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ: Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008, 59:214-225.
- [155]Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires-Jones T, Xie H, Arbel-Ornath M, Grosskreutz CL, et al.: Amyloid beta Induces the Morphological Neurodegenerative Triad of Spine Loss, Dendritic Simplification, and Neuritic Dystrophies through Calcineurin Activation. J Neurosci 2010, 30:2636-2649.
- [156]Rozkalne A, Hyman BT, Spires-Jones TL: Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol Dis 2011, 41:650-654.
- [157]Spires-Jones TL, Kay K, Matsouka R, Rozkalne A, Betensky RA, Hyman BT: Calcineurin inhibition with systemic FK506 treatment increases dendritic branching and dendritic spine density in healthy adult mouse brain. Neurosci Lett 2011, 487:260-263.
- [158]Taglialatela G, Hogan D, Zhang WR, Dineley KT: Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 2009, 200:95-99.
- [159]Koffie RM, Hyman BT, Spires-Jones TL: Alzheimer's disease: synapses gone cold. Mol Neurodegener 2011, 6:63. BioMed Central Full Text
- [160]Nelson O, Tu H, Lei T, Bentahir M, de Strooper B, Bezprozvanny I: Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest 2007, 117:1230-1239.
- [161]Bezprozvanny I, Mattson MP: Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci 2008, 31:454-463.
- [162]Supnet C, Bezprozvanny I: The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010, 47:183-189.
- [163]Supnet C, Bezprozvanny I: Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease. J Alzheimer's Dis 2010, 2:S487-498. 20 Suppl
- [164]Stutzmann GE: The pathogenesis of Alzheimers disease is it a lifelong "calciumopathy"? Neuroscientist 2007, 13:546-559.
- [165]Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee S-F, Hao YH, Serneels L, De Strooper B, Yu G, Bezprozvanny I: Presenilins form ER calcium leak channels, a function disrupted by mutations linked to familial Alzheimer's disease. Cell 2006, 126:981-993.
- [166]Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I: Role of presenilins in neuronal calcium homeostasis. J Neurosci 2010, 30:8566-8580.
- [167]Nelson O, Supnet C, Liu H, Bezprozvanny I: Familial Alzheimer's disease mutations in presenilins: effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. J Alzheimer's Dis 2010, 21:781-793.
- [168]Das HK, Tchedre K, Mueller B: Repression of transcription of presenilin-1 inhibits gamma-secretase independent ER Ca(2)(+) leak that is impaired by FAD mutations. J Neurochem 2012, 122:487-500.
- [169]Bandara S, Malmersjö S, Meyer T: Regulators of calcium homeostasis identified by inference of kinetic model parameters from live single cells perturbed by siRNA. Sci Signal 2013. vol 6, ra56
- [170]Li X, Dang S, Yan C, Gong X, Wang J, Shi Y: Structure of a presenilin family intramembrane aspartate protease. Nature 2013, 493:56-61.
- [171]Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM: Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 2000, 149:793-798.
- [172]Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, et al.: Presenilin-mediated modulation of capacitative calcium entry. Neuron 2000, 27:561-572.
- [173]Chakroborty S, Goussakov I, Miller MB, Stutzmann GE: Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 2009, 29:9458-9470.
- [174]Chakroborty S, Kim J, Schneider C, Jacobson C, Molgo J, Stutzmann GE: Early presynaptic and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer's disease mice. J Neurosci 2012, 32:8341-8353.
- [175]Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, Sudhof TC, Shen J: Presenilins are essential for regulating neurotransmitter release. Nature 2009, 460:632-636.
- [176]Zhang D, Zhang C, Ho A, Kirkwood A, Sudhof TC, Shen J: Inactivation of presenilins causes pre-synaptic impairment prior to post-synaptic dysfunction. J Neurochem 2010, 115(5):1215-1221.
- [177]Pratt KG, Zimmerman EC, Cook DG, Sullivan JM: Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling. Nat Neurosci 2011, 14:1112-1114.
- [178]Miller BR, Bezprozvanny I: Corticostriatal circuit dysfunction in Huntington’s disease: intersection of glutamate, dopamine, and calcium. Futur Neurol 2010, 5:735-756.
- [179]Eidelberg D, Surmeier DJ: Brain networks in Huntington disease. J Clin Invest 2011, 121:484-492.
- [180]Milnerwood AJ, Raymond LA: Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci 2010, 33:513-523.
- [181]Cepeda C, Wu N, Andre VM, Cummings DM, Levine MS: The corticostriatal pathway in Huntington's disease. Prog Neurobiol 2007, 81:253-271.