Orphanet Journal of Rare Diseases | |
Therapeutic strategies based on modified U1 snRNAs and chaperones for Sanfilippo C splicing mutations | |
Lluïsa Vilageliu6  Sandra Alves3  Daniel Grinberg6  Alexey V Pshezhetsky7  Belén Pérez4  Lourdes R Desviat4  Peter Jordan2  Maria João Prata5  Yoo Choi7  Larbi Dridi7  Isaac Canals6  Liliana Matos1  | |
[1] Department of Biology, Faculty of Sciences, Porto, Portugal;Department of Human Genetics, Research and Development Unit, INSA, Lisbon, Portugal;Department of Human Genetics, Research and Development Unit, INSA, Porto, Portugal;Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain;IPATIMUP, Porto, Portugal;Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain;Department of Medical Genetics, Sainte-Justine University Hospital Centre, University of Montreal, Montreal, Canada | |
关键词: Lysosomal storage disorder; Sanfilippo C syndrome; Glucosamine; Modified U1 snRNAs; Splicing mutations; | |
Others : 1228425 DOI : 10.1186/s13023-014-0180-y |
|
received in 2014-08-13, accepted in 2014-11-04, 发布年份 2014 | |
【 摘 要 】
Background
Mutations affecting RNA splicing represent more than 20% of the mutant alleles in Sanfilippo syndrome type C, a rare lysosomal storage disorder that causes severe neurodegeneration. Many of these mutations are localized in the conserved donor or acceptor splice sites, while few are found in the nearby nucleotides.
Methods
In this study we tested several therapeutic approaches specifically designed for different splicing mutations depending on how the mutations affect mRNA processing. For three mutations that affect the donor site (c.234 + 1G > A, c.633 + 1G > A and c.1542 + 4dupA), different modified U1 snRNAs recognizing the mutated donor sites, have been developed in an attempt to rescue the normal splicing process. For another mutation that affects an acceptor splice site (c.372-2A > G) and gives rise to a protein lacking four amino acids, a competitive inhibitor of the HGSNAT protein, glucosamine, was tested as a pharmacological chaperone to correct the aberrant folding and to restore the normal trafficking of the protein to the lysosome.
Results
Partial correction of c.234 + 1G > A mutation was achieved with a modified U1 snRNA that completely matches the splice donor site suggesting that these molecules may have a therapeutic potential for some splicing mutations. Furthermore, the importance of the splice site sequence context is highlighted as a key factor in the success of this type of therapy. Additionally, glucosamine treatment resulted in an increase in the enzymatic activity, indicating a partial recovery of the correct folding.
Conclusions
We have assayed two therapeutic strategies for different splicing mutations with promising results for the future applications.
【 授权许可】
2014 Matos et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151016040431680.pdf | 1383KB | download | |
Figure 4. | 32KB | Image | download |
Figure 3. | 49KB | Image | download |
Figure 2. | 56KB | Image | download |
Figure 1. | 38KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Neufeld EF, Muenzer J: The Mucopolysaccharidoses. In The metabolic and molecular bases of inherited disease. 8th edition. Edited by Scriver CR, Beaudet AL, Sly WS, Valle D. McGraw-Hill, New York; 2001:3421-3452.
- [2]Valstar MJ, Ruijter GJG, van Diggelen OP, Poorthuis BJ, Wijburg FA: Sanfilippo syndrome: a mini-review. J Inherit Metab Dis 2008, 31:240-252.
- [3]Klein U, Kresse H, von Figura K: Sanfilippo syndrome type C: deficiency of acetyl-CoA:alpha-glucosaminide N-acetyltransferase in skin fibroblasts. Proc Natl Acad Sci U S A 1978, 75:5185-5189.
- [4]Fan X, Zhang H, Zhang S, Bagshaw RD, Tropak MB, Callahan JW, Mahuran DJ: Identification of the gene encoding the enzyme deficient in mucopolysaccharidosis IIIC (Sanfilippo disease type C). Am J Hum Genet 2006, 79:738-744.
- [5]Hřebíček M, Mrázová L, Seyrantepe V: Mutations in TMEM76 Cause Mucopolysaccharidosis IIIC (Sanfilippo C Syndrome). Am J Hum Genet 2006, 79:807-819.
- [6]Durand S, Feldhammer M, Bonneil E, Thibault P, Pshezhetsky AV: Analysis of the biogenesis of heparan sulfate acetyl-CoA:alpha-glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete deficiency in mucopolysaccharidosis IIIC. J Biol Chem 2010, 285:31233-31242.
- [7]Fan X, Tkachyova I, Sinha A, Rigat B, Mahuran D: Characterization of the biosynthesis, processing and kinetic mechanism of action of the enzyme deficient in mucopolysaccharidosis IIIC. PLoS One 2011, 6:e24951.
- [8]Wahl MC, Will CL, Lührmann R: The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
- [9]Roca X, Akerman M, Gaus H, Berdeja A, Bennett CF, Krainer AR: Widespread recognition of 5’ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev 2012, 26:1098-1109.
- [10]Fernandez Alanis E, Pinotti M, Dal Mas A, Balestra D, Cavallari N, Rogalska ME, Bernardi F, Pagani F: An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Hum Mol Genet 2012, 21:2389-2398.
- [11]Pinotti M, Rizzotto L, Balestra D, Lewandowska MA, Cavallari N, Marchetti G, Bernardi F, Pagani F: U1-snRNA-mediated rescue of mRNA processing in severe factor VII deficiency. Blood 2008, 111:2681-2684.
- [12]Sánchez-Alcudia R, Pérez B, Pérez-Cerdá C, Ugarte M, Desviat LR: Overexpression of adapted U1snRNA in patients’ cells to correct a 5' splice site mutation in propionic acidemia. Mol Genet Metab 2011, 102:134-138.
- [13]Schmid F, Hiller T, Korner G, Glaus E, Berger W, Neidhardt J: A gene therapeutic approach to correct splice defects with modified U1 and U6 snRNPs. Hum Gene Ther 2013, 24:97-104.
- [14]Tanner G, Glaus E, Barthelmes D, Ader M, Fleischhauer J, Pagani F, Berger W, Neidhardt J: Therapeutic strategy to rescue mutation-induced exon skipping in rhodopsin by adaptation of U1 snRNA. Hum Mutat 2009, 30:255-263.
- [15]Susani L, Pangrazio A, Sobacchi C, Taranta A, Mortier G, Savarirayan R, Villa A, Orchard P, Vezzoni P, Albertini A, Frattini A, Pagani F: TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat 2004, 24:225-235.
- [16]Mattioli C, Pianigiani G, De Rocco D, Bianco AMR, Cappelli E, Savoia A, Pagani F: Unusual splice site mutations disrupt FANCA exon 8 definition. Biochim Biophys Acta 1842, 2014:1052-1058.
- [17]Glaus E, Schmid F, Da Costa R, Berger W, Neidhardt J: Gene therapeutic approach using mutation-adapted U1 snRNA to correct a RPGR splice defect in patient-derived cells. Mol Ther 2011, 19:936-941.
- [18]Baralle M, Baralle D, De Conti L, Mattocks C, Whittaker J, Knezevich A, Ffrench-Constant C, Baralle FE: Identification of a mutation that perturbs NF1 gene splicing using genomic DNA samples and a minigene assay. J Med Genet 2003, 40:220-222.
- [19]Hartmann L, Neveling K, Borkens S, Schneider H, Freund M, Grassman E, Theiss S, Wawer A, Burdach S, Auerbach AD, Schindler D, Hanenberg H, Schaal H: Correct mRNA processing at a mutant TT splice donor in FANCC ameliorates the clinical phenotype in patients and is enhanced by delivery of suppressor U1 snRNAs. Am J Hum Genet 2010, 87:480-493.
- [20]Balestra D, Faella A, Margaritis P, Cavallari N, Pagani F, Bernardi F, Arruda VR, Pinotti M: An engineered U1 small nuclear RNA rescues splicing-defective coagulation F7 gene expression in mice. J Thromb Haemost 2014, 12:177-185.
- [21]Suzuki Y: Emerging novel concept of chaperone therapies for protein misfolding diseases. Proc Japan Acad Ser B 2014, 90:145-162.
- [22]Bernier V, Lagacé M, Bichet DG, Bouvier M: Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 2004, 15:222-228.
- [23]Sawkar AR, Cheng W-C, Beutler E, Wong C-H, Balch WE, Kelly JW: Chemical chaperones increase the cellular activity of N370S beta -glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci U S A 2002, 99:15428-15433.
- [24]Feldhammer M, Durand S, Pshezhetsky AV: Protein misfolding as an underlying molecular defect in mucopolysaccharidosis III type C. PLoS One 2009, 4:e7434.
- [25]Canals I, Elalaoui SC, Pineda M, Delgadillo V, Szlago M, Jaouad IC, Sefiani A, Chabás A, Coll MJ, Grinberg D, Vilageliu L: Molecular analysis of Sanfilippo syndrome type C in Spain: seven novel HGSNAT mutations and characterization of the mutant alleles. Clin Genet 2011, 80:367-374.
- [26]Feldhammer M, Durand S, Mrázová L, Boucher R-M, Laframboise R, Steinfeld R, Wraith JE, Michelakakis H, van Diggelen OP, Hrebícek M, Kmoch S, Pshezhetsky AV: Sanfilippo syndrome type C: mutation spectrum in the heparan sulfate acetyl-CoA: alpha-glucosaminide N-acetyltransferase (HGSNAT) gene. Hum Mutat 2009, 30:918-925.
- [27]Coutinho MF, Lacerda L, Prata MJ, Ribeiro H, Lopes L, Ferreira C, Alves S: Molecular characterization of Portuguese patients with mucopolysaccharidosis IIIC: two novel mutations in the HGSNAT gene. Clin Genet 2008, 74:194-195.
- [28]Lund E, Dahlberg JE: True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation. J Biol Chem 1984, 259:2013-2021.
- [29]Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Béroud C: Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009, 37:e67.
- [30]Brackenridge S, Wilkie AO, Screaton GR: Efficient use of a 'dead-end' GA 5'splice site in the human fibroblast growth factor receptor genes. EMBO J 2003, 22:1620-31.
- [31]Hwang DY, Cohen JB: U1 snRNA promotes the selection of nearby 5' splice sites by U6 snRNA in mammalian cells. Genes Dev 1996, 10:338-50.
- [32]Wu Q, Krainer AR: AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol 1999, 19(5):3225-36.
- [33]Kubota T, Roca X, Kimura T, Kokunai Y, Nishino I, Sakoda S, Krainer AR, Takahashi MP: A mutation in a rare type of intron in a sodium-channel gene results in aberrant splicing and causes myotonia. Hum Mutat 2011, 32(7):773-82.