期刊论文详细信息
Journal of Biomedical Science
Relevance of retrovirus quantification in cerebrospinal fluid for neurologic diagnosis
Marzia Puccioni-Sohler1  Carolina Rosadas1 
[1] Laboratório de Líquido Cefalorraquiano, Serviço de Patologia Clínica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco 255, 3 ± andar, Rio de Janeiro 21941-913, RJ, Brazil
关键词: HIV;    HTLV;    Proviral load;    Viral load;    Cerebrospinal fluid;    Retrovirus;   
Others  :  1225526
DOI  :  10.1186/s12929-015-0170-y
 received in 2015-02-05, accepted in 2015-07-21,  发布年份 2015
PDF
【 摘 要 】

Different human retroviruses, such as Human Immunodeficiency Virus (HIV) and Human T-cell Lymphotropic Virus (HTLV), can cause neurologic infection. However, a definitive diagnosis may be hampered by several factors. Quantification of the viral or proviral load in cerebrospinal fluid (CSF) may be helpful in the diagnosis of nervous system disorders due to retroviral infection and may influence the treatment approach. The present work discusses retrovirus infection and neurologic impairment, as well as the usefulness of the determination of the HIV and HTLV proviral or viral load in cerebrospinal fluid in cases of neurologic disorder, in light of recent advances in this field. This study also discusses the different molecular techniques for quantifying the proviral load (real-time quantitative PCR, droplet digital PCR, and semi-nested real-time reverse transcription PCR) that are currently available.

【 授权许可】

   
2015 Rosadas and Puccioni-Sohler.

【 预 览 】
附件列表
Files Size Format View
20150920094916158.pdf 775KB PDF download
Fig. 1. 66KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Verdonck K, González E, Van Dooren S, Vandamme A-M, Vanham G, Gotuzzo E. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect Dis. 2007; 7:266-81.
  • [2]Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T et al.. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol. 1998; 4:586-93.
  • [3]Canestri A, Lescure F-X, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG et al.. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010; 50:773-8.
  • [4]Rosadas C, Cabral-Castro MJ, Vicente ACP, Peralta JM, Puccioni-Sohler M. Validation of a quantitative real-time PCR assay for HTLV-1 proviral load in peripheral blood mononuclear cells. J Virol Methods. 2013; 193:536-41.
  • [5]Schmid P, Conrad A, Syndulko K, Singer EJ, Handley D, Li X et al.. Quantifying HIV-1 proviral DNA using the polymerase chain reaction on cerebrospinal fluid and blood of seropositive individuals with and without neurologic abnormalities. J Acquir Immune Defic Syndr. 1994; 7:777-88.
  • [6]Zayyad Z, Spudich S. Neuropathogenesis of HIV: From Initial Neuroinvasion to HIV-Associated Neurocognitive Disorder (HAND). Curr HIV/AIDS Rep. 2015;12(1):16–24.
  • [7]Lamers SL, Fogel GB, Nolan DJ, McGrath MS, Salemi M. HIV-associated neuropathogenesis: a systems biology perspective for modeling and therapy. Biosystems. 2014; 119:53-61.
  • [8]Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A et al.. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS. 2012; 26:1765-74.
  • [9]Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S et al.. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011; 17:3-16.
  • [10]Gessain A, Mahieux R. Tropical spastic paraparesis and HTLV-1 associated myelopathy: clinical, epidemiological, virological and therapeutic aspects. Rev Neurol (Paris). 2012; 168:257-69.
  • [11]Biswas HH, Engstrom JW, Kaidarova Z, Garratty G, Gibble JW, Newman BH et al.. Neurologic abnormalities in HTLV-I- and HTLV-II-infected individuals without overt myelopathy. Neurology. 2009; 73:781-9.
  • [12]Puccioni-Sohler M, Rios M, Bianco C, Zhu SW, Oliveira C, Novis SA et al.. An inverse correlation of HTLV-I viral load in CSF and intrathecal synthesis of HTLV-I antibodies in TSP/HAM. Neurology. 1999; 53:1335-9.
  • [13]Puccioni-Sohler M, Yamano Y, Rios M, Carvalho SMF, Vasconcelos CCF, Papais-Alvarenga R et al.. Differentiation of HAM/TSP from patients with multiple sclerosis infected with HTLV-I. Neurology. 2007; 68:206-13.
  • [14]Mendes GB, Kalil RS, Rosadas C, de Freitas MRG, Puccioni-Sohler M. Temporal lesions and widespread involvement of white matter associated with multi-organ inflammatory disease in human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Int J Infect Dis. 2014;25:1–3.
  • [15]Gill AJ, Kolson DL. Chronic inflammation and the role for cofactors (hepatitis C, drug abuse, antiretroviral drug toxicity, aging) in HAND persistence. Curr HIV/AIDS Rep. 2014; 11:325-35.
  • [16]Rosadas C, Mendes GB, Puccioni-Sohler M. Inflammation Inducing Central Nervous System Damage in HTLV-1 Infection. Inflammation Cell Signaling 2014;1(5):10–14800/ics.233.
  • [17]Puccioni-Sohler M, Rios M, Carvalho SM, Gonçalves RR, Oliveira C, Correa RB et al.. Diagnosis of HAM/TSP based on CSF proviral HTLV-I DNA and HTLV-I antibody index. Neurology. 2001; 57:725-7.
  • [18]Edén A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B et al.. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010; 202:1819-25.
  • [19]Khoury MN, Tan CS, Peaslee M, Koralnik IJ. CSF viral escape in a patient with HIV-associated neurocognitive disorder. J Neurovirol. 2013; 19:402-5.
  • [20]Hayashi D, Kubota R, Takenouchi N, Nakamura T, Umehara F, Arimura K et al.. Accumulation of human T-lymphotropic virus type I (HTLV-I)-infected cells in the cerebrospinal fluid during the exacerbation of HTLV-I-associated myelopathy. J Neurovirol. 2008; 14:459-63.
  • [21]Lezin A, Olindo S, Oliere S, Varrin-Doyer M, Marlin R, Cabre P et al.. Human T lymphotropic virus type I (HTLV-I) proviral load in cerebrospinal fluid: a new criterion for the diagnosis of HTLV-I-associated myelopathy/tropical spastic paraparesis? J Infect Dis. 2005; 191:1830-4.
  • [22]Calcagno A, Atzori C, Romito A, Ecclesia S, Imperiale D, Audagnotto S et al.. Cerebrospinal fluid biomarkers in patients with plasma HIV RNA below 20 copies/mL. J Int AIDS Soc. 2014; 17(4 Suppl 3):19719.
  • [23]Cook LB, Elemans M, Rowan AG, Asquith B. HTLV-1: persistence and pathogenesis. Virology. 2013; 435:131-40.
  • [24]Morgan O. HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis How Far have We Come? West Indian Med J. 2011;60(5):505–12.
  • [25]Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A et al.. HTLV-I associated myelopathy, a new clinical entity. Lancet. 1986; 1:1031-2.
  • [26]Snider WD, Simpson DM, Nielsen S, Gold JW, Metroka CE, Posner JB. Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann Neurol. 1983; 14:403-18.
  • [27]Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M et al.. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007; 69:1789-99.
  • [28]Grant I, Atkinson JH, Hesselink JR, Kennedy CJ, Richman DD, Spector SA et al.. Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med. 1987; 107:828-36.
  • [29]Bhaskaran K, Mussini C, Antinori A, Walker AS, Dorrucci M, Sabin C et al.. Changes in the incidence and predictors of human immunodeficiency virus-associated dementia in the era of highly active antiretroviral therapy. Ann Neurol. 2008; 63:213-21.
  • [30]Osame M. Review of WHO Kagoshima meeting and diagnostic guidelines for HAM/TSP. Human retrovirology: HTLV. Volume Osame M. 1990.191-7.
  • [31]Tamegão-lopes BP, Rezende PR, Cunha LM. Carga proviral do HTLV-1 e HTLV-2 : um método simples através da PCR quantitativa em tempo real HTLV-1 and HTLV-2 proviral load : a simple method using quantitative real-time PCR. Rev Soc Bras Med Trop. 2006;39(6):548–52.
  • [32]Waziri A, Soldan SS, Graf MD, Nagle J, Jacobson S. Characterization and sequencing of prototypic human T-lymphotropic virus type 1 (HTLV-1) from an HTLV-1/2 seroindeterminate patient. J Virol. 2000; 74:2178-85.
  • [33]Abrams A, Akahata Y, Jacobson S. The prevalence and significance of HTLV-I/II seroindeterminate Western blot patterns. Viruses. 2011; 3:1320-31.
  • [34]Tebourski F, Slim A, Elgaaied A. The significance of combining World Health Organization and Center for Disease Control criteria to resolve indeterminate human immunodeficiency virus type-1 Western blot results. Diagn Microbiol Infect Dis. 2004; 48:59-61.
  • [35]Brito S, Furtado S, Andrade RG, Romanelli F, Ribeiro MA, Ribas G, Freitas D, Proietti C, Martins ML, Ba A, Tsp HAM: Monitoring the HTLV-1 Proviral Load in the Peripheral Blood of Asymptomatic Carriers and Patients With HTLV-Associated Myelopathy/Tropical Spastic Paraparesis From a Brazilian Cohort: ROC Curve Analysis to Establish the Threshold for Risk Disease. J Med Virol. 2012;84(4):664–71.
  • [36]Fernanda M, Grassi R, Olavarria VN, Kruschewsky RDA, Correia LCL, Maurı C et al. Human T Cell Lymphotropic Virus Type 1 (HTLV-1) Proviral Load of HTLV-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) Patients According to New Diagnostic Criteria of HAM/TSP. J Med Virol. 2011;83(7):1269–74.
  • [37]Brunetto GS, Massoud R, Leibovitch EC, Caruso B, Johnson K, Ohayon J et al.. Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and identification of viral mutations. J Neurovirol. 2014; 20:341-51.
  • [38]Nagai M, Yamano Y, Brennan MB, Mora CA, Jacobson S. Increased HTLV-I proviral load and preferential expansion of HTLV-I Tax-specific CD8+ T cells in cerebrospinal fluid from patients with HAM/TSP. Ann Neurol. 2001; 50:807-12.
  • [39]Doyle T, Geretti AM. Low-level viraemia on HAART: significance and management. Curr Opin Infect Dis. 2012; 25:17-25.
  • [40]Falcone EL, Adegbulugbe AA, Sheikh V, Imamichi H, Dewar RL, Hammoud DA et al.. Cerebrospinal fluid HIV-1 compartmentalization in a patient with AIDS and acute varicella-zoster virus meningomyeloradiculitis. Clin Infect Dis. 2013; 57:e135-42.
  • [41]Smit TK, Brew BJ, Tourtellotte W, Morgello S, Gelman BB, Saksena NK. Independent evolution of human immunodeficiency virus (HIV) drug resistance mutations in diverse areas of the brain in HIV-infected patients, with and without dementia, on antiretroviral treatment. J Virol. 2004; 78:10133-48.
  • [42]Soulie C, Descamps D, Grudé M, Schneider V, Trabaud M-A, Morand-Joubert L et al.. Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma. J Antimicrob Chemother. 2015; 70:566-72.
  • [43]Béguelin C, Vázquez M, Bertschi M, Yerly S, de Jong D, Rauch A et al.. Viral escape in the CNS with multidrug-resistant HIV-1. J Int AIDS Soc. 2014; 17(4 Suppl 3):19745.
  • [44]Ritola K, Robertson K, Fiscus SA, Hall C, Swanstrom R. Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J Virol. 2005; 79:10830-4.
  • [45]Rotta I, Raboni SM, Ribeiro CEL, Riedel M, da Winhescki MG, Smith DM et al.. Cerebrospinal fluid can be used for HIV genotyping when it fails in blood. Arq Neuropsiquiatr. 2014; 72:506-9.
  • [46]Di Yacovo MS, Moltó J, Ferrer E, Curran A, Else L, Gisslén M et al. Antiviral activity and CSF concentrations of 600/100 mg of darunavir/ritonavir once daily in HIV-1 patients with plasma viral suppression. J Antimicrob Chemother. 2015;70(5):1513–6.
  • [47]Calcagno A, Di Perri G, Bonora S. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet. 2014; 53:891-906.
  • [48]Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC et al.. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008; 65:65-70.
  • [49]Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S et al.. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol. 2013; 51:540-6.
  • [50]Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH et al.. Highly precise measurement of HIV DNA by droplet digital PCR. PLoS ONE. 2013; 8: Article ID e55943
  • [51]Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996; 6:986-94.
  • [52]Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5’----3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991; 88:7276-80.
  • [53]Lee T-H, Chafets DM, Busch MP, Murphy EL. Quantitation of HTLV-I and II proviral load using real-time quantitative PCR with SYBR Green chemistry. J Clin Virol. 2004; 31:275-82.
  • [54]Kiselinova M, Pasternak AO, De Spiegelaere W, Vogelaers D, Berkhout B, Vandekerckhove L. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS ONE. 2014; 9: Article ID e85999
  • [55]Pasternak AO, Adema KW, Bakker M, Jurriaans S, Berkhout B, Cornelissen M et al.. Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J Clin Microbiol. 2008; 46:2206-11.
  文献评价指标  
  下载次数:1次 浏览次数:8次