期刊论文详细信息
Cell Division
Two sides of the Myc-induced DNA damage response: from tumor suppression to tumor maintenance
Bruno Amati1  Stefano Campaner2 
[1] Department of Experimental Oncology, European Institute of Oncology (IEO), at the IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy;Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan, Italy
关键词: Cell cycle;    Tumor suppression;    DNA damage response;    DNA damage;    CHK1;    ATR;    Replication stress;    Myc;   
Others  :  792690
DOI  :  10.1186/1747-1028-7-6
 received in 2012-02-19, accepted in 2012-02-28,  发布年份 2012
PDF
【 摘 要 】

Activation of oncogenes is generally associated with the induction of DNA damage response (DDR) signaling, which acts as a barrier to tumor progression. In this review we will present an overview of the DDR associated with oncogenic activation of Myc, with special focus on two opposite and paradoxical aspects of this response: (1) the role of the Myc-induced DDR in tumor suppression; (2) its role in dampening Myc-induced replication stress, thereby protecting the viability of prospective cancer cells. These opposing effects on cancer progression are controlled by two different branches of DDR signaling, respectively ATM/CHK2 and ATR/CHK1. Indeed, while ATM activity constitutes a barrier to malignant transformation, full activation of ATR and CHK1 is essential for tumor maintenance, providing important opportunities for therapeutic intervention. Thus, the Myc-induced DDR acts as a double-edged sword in tumor progression.

【 授权许可】

   
2012 Campaner and Amati; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705034542575.pdf 438KB PDF download
Figure 3. 56KB Image download
Figure 2. 46KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Blackwood EM, Eisenman RN: Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991, 251:1211-1217.
  • [2]Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H: Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 1992, 359:423-426.
  • [3]Kato GJ, Barrett J, Villa-Garcia M, Dang CV: An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 1990, 10:5914-5920.
  • [4]Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R: Non-transcriptional control of DNA replication by c-Myc. Nature 2007, 448:445-451.
  • [5]Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I: Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas. Nat Genet 1993, 5:56-61.
  • [6]Henriksson M, Bakardjiev A, Klein G, Luscher B: Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 1993, 8:3199-3209.
  • [7]Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR: Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 1994, 9:59-70.
  • [8]Shen-Ong GL, Keath EJ, Piccoli SP, Cole MD: Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell 1982, 31:443-452.
  • [9]Crews S, Barth R, Hood L, Prehn J, Calame K: Mouse c-myc oncogene is located on chromosome 15 and translocated to chromosome 12 in plasmacytomas. Science 1982, 218:1319-1321.
  • [10]Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM: Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 1982, 79:7824-7827.
  • [11]Neel BG, Jhanwar SC, Chaganti RS, Hayward WS: Two human c-onc genes are located on the long arm of chromosome 8. Proc Natl Acad Sci USA 1982, 79:7842-7846.
  • [12]Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P: Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 1982, 79:7837-7841.
  • [13]Dalla-Favera R, Wong-Staal F, Gallo RC: Onc gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient. Nature 1982, 299:61-63.
  • [14]Collins S, Groudine M: Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature 1982, 298:679-681.
  • [15]Payne GS, Courtneidge SA, Crittenden LB, Fadly AM, Bishop JM, Varmus HE: Analysis of avian leukosis virus DNA and RNA in bursal tumours: viral gene expression is not required for maintenance of the tumor state. Cell 1981, 23:311-322.
  • [16]Hayward WS, Neel BG, Astrin SM: Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 1981, 290:475-480.
  • [17]Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, et al.: c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006, 20:2096-2109.
  • [18]Gregory MA, Hann SR: c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 2000, 20:2423-2435.
  • [19]Sears R, Leone G, DeGregori J, Nevins JR: Ras enhances Myc protein stability. Mol Cell 1999, 3:169-179.
  • [20]Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR: Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000, 14:2501-2514.
  • [21]Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL: Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 1999, 13:2658-2669.
  • [22]Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF: Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998, 12:2424-2433.
  • [23]Lowe SW, Cepero E, Evan G: Intrinsic tumour suppression. Nature 2004, 432:307-315.
  • [24]Post SM, Quintas-Cardama A, Terzian T, Smith C, Eischen CM, Lozano G: p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene 2009, 29:1260-1269.
  • [25]Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW: Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 2005, 436:807-811.
  • [26]Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW: Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 2002, 1:289-298.
  • [27]Maclean KH, Kastan MB, Cleveland JL: Atm deficiency affects both apoptosis and proliferation to augment Myc-induced lymphomagenesis. Mol Cancer Res 2007, 5:705-711.
  • [28]Pusapati RV, Rounbehler RJ, Hong S, Powers JT, Yan M, Kiguchi K, McArthur MJ, Wong PK, Johnson DG: ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc Natl Acad Sci USA 2006, 103:1446-1451.
  • [29]Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, et al.: Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 2007, 448:1063-1067.
  • [30]Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM: c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002, 9:1031-1044.
  • [31]Ray S, Atkuri KR, Deb-Basu D, Adler AS, Chang HY, Herzenberg LA, Felsher DW: MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res 2006, 66:6598-6605.
  • [32]Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, et al.: HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007, 12:230-238.
  • [33]Felsher DW, Bishop JM: Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 1999, 96:3940-3944.
  • [34]Reimann M, Loddenkemper C, Rudolph C, Schildhauer I, Teichmann B, Stein H, Schlegelberger B, Dorken B, Schmitt CA: The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 2007, 110:2996-3004.
  • [35]Shreeram S, Hee WK, Demidov ON, Kek C, Yamaguchi H, Fornace AJ Jr: Anderson CW, Appella E, Bulavin DV: Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J Exp Med 2006, 203:2793-2799.
  • [36]Harper JW, Elledge SJ: The DNA damage response: ten years after. Mol Cell 2007, 28:739-745.
  • [37]Liyanage M, Weaver Z, Barlow C, Coleman A, Pankratz DG, Anderson S, Wynshaw-Boris A, Ried T: Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 2000, 96:1940-1946.
  • [38]Korz C, Pscherer A, Benner A, Mertens D, Schaffner C, Leupolt E, Dohner H, Stilgenbauer S, Lichter P: Evidence for distinct pathomechanisms in B-cell chronic lymphocytic leukemia and mantle cell lymphoma by quantitative expression analysis of cell cycle and apoptosis-associated genes. Blood 2002, 99:4554-4561.
  • [39]Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL: The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985, 318:533-538.
  • [40]Sun Y, Jiang X, Chen S, Fernandes N, Price BD: A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 2005, 102:13182-13187.
  • [41]van Attikum H, Gasser SM: Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 2009, 19:207-217.
  • [42]Squatrito M, Gorrini C, Amati B: Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 2006, 16:433-442.
  • [43]Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR: Abmayr SM, Washburn MP, Workman JL: Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 2004, 306:2084-2087.
  • [44]Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434:913-917.
  • [45]Hoglund A, Stromvall K, Li Y, Forshell LP, Nilsson JA: Chk2 deficiency in Myc overexpressing lymphoma cells elicits a synergistic lethal response in combination with PARP inhibition. Cell Cycle 2011, 10:3598-3607.
  • [46]Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, Golec JM, Pollard JR: Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 2011, 7:428-430.
  • [47]Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, et al.: DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005, 434:864-870.
  • [48]Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, et al.: Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006, 444:633-637.
  • [49]Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, et al.: Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006, 444:638-642.
  • [50]Amati B, Alevizopoulos K, Vlach J: Myc and the cell cycle. Front Biosci 1998, 3:d250-d268.
  • [51]Liu YC, Li F, Handler J, Huang CR, Xiang Y, Neretti N, Sedivy JM, Zeller KI, Dang CV: Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS One 2008, 3:e2722.
  • [52]Pichierri P, Ammazzalorso F, Bignami M, Franchitto A: The Werner syndrome protein: linking the replication checkpoint response to genome stability. Aging (Albany NY) 2011, 3:311-318.
  • [53]Sidorova JM, Li N, Folch A, Monnat RJ Jr: The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 2008, 7:796-807.
  • [54]Robinson K, Asawachaicharn N, Galloway DA, Grandori C: c-Myc accelerates S-phase and requires WRN to avoid replication stress. PLoS One 2009, 4:e5951.
  • [55]Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J, Clurman BE, Moser MJ, Oshima J, Russell DW, Swisshelm K, et al.: Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 2003, 17:1569-1574.
  • [56]Moser R, Toyoshima M, Robinson K, Gurley KE, Howie HL, Davison J, Morgan M, Kemp CJ, Grandori C: MYC-driven tumorigenesis is inhibited by WRN syndrome gene deficiency. Mol Cancer Res 2012, in press.
  • [57]Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B: Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011, 145:435-446.
  • [58]Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG, Mathews CK, Shewach DS, Nikiforov MA: Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 2008, 7:2392-2400.
  • [59]Cimprich KA, Cortez D: ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008, 9:616-627.
  • [60]Lopez-Contreras AJ, Fernandez-Capetillo O: The ATR barrier to replication-born DNA damage. DNA Repair (Amst) 2010, 9:1249-1255.
  • [61]Brown EJ, Baltimore D: Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 2003, 17:615-628.
  • [62]de Klein A, Muijtjens M, van Os R, Verhoeven Y, Smit B, Carr AM, Lehmann AR, Hoeijmakers JH: Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 2000, 10:479-482.
  • [63]Takai H, Tominaga K, Motoyama N, Minamishima YA, Nagahama H, Tsukiyama T, Ikeda K, Nakayama K, Nakanishi M: Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev 2000, 14:1439-1447.
  • [64]Murga M, Bunting S, Montana MF, Soria R, Mulero F, Canamero M, Lee Y, McKinnon PJ, Nussenzweig A, Fernandez-Capetillo O: A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet 2009, 41:891-898.
  • [65]Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montana MF, D'Artista L, Schleker T, Guerra C, Garcia E, et al.: Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 2011, 18:1331-1335.
  • [66]Hoglund A, Nilsson LM, Muralidharan SV, Hasvold LA, Merta P, Rudelius M, Nikolova V, Keller U, Nilsson JA: Therapeutic implications for the induced levels of Chk1 in Myc-expressing cancer cells. Clin Cancer Res 2011, 17:7067-7079.
  • [67]Schoppy DW, Ragland RL, Gilad O, Shastri N, Peters AA, Murga M, Fernandez-Capetillo O, Diehl JA, Brown EJ: Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 2012, 122:241-252.
  • [68]Gilad O, Nabet BY, Ragland RL, Schoppy DW, Smith KD, Durham AC, Brown EJ: Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 2010, 70:9693-9702.
  • [69]Ferrao PT, Bukczynska EP, Johnstone RW, McArthur GA: Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene 2011, in press. doi: 10.1038/onc.2011.358
  • [70]Cole KA, Huggins J, Laquaglia M, Hulderman CE, Russell MR, Bosse K, Diskin SJ, Attiyeh EF, Sennett R, Norris G, et al.: RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci USA 2011, 108:3336-3341.
  • [71]Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, Schleker T, Perna D, Tronnersjo S, Murga M, et al.: Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 2010, 12:54-59. sup pp 51-14
  • [72]Puyol M, Martin A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaria D, Barbacid M: A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 2010, 18:63-73.
  • [73]Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P: A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011, 20:620-634.
  • [74]Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, Yang WL, Wang J, Egia A, Nakayama KI, et al.: Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 2010, 464:374-379.
  文献评价指标  
  下载次数:27次 浏览次数:6次