期刊论文详细信息
Journal of Nanobiotechnology
Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles
Michelle L Matter3  John S Allen1  Kristina D A Mojica2  Pavlos Anastasiadis1 
[1]Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
[2]Current address: Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
[3]University of Hawaii Cancer Center, Honolulu, HI 96813, USA
关键词: Microbubbles;    Molecular imaging;    Acoustic microscopy;    Cancer;    Targeted ultrasound contrast agents;    Biofilm matrix;    Lipid particles;    Targeted therapy;   
Others  :  1146388
DOI  :  10.1186/1477-3155-12-24
 received in 2014-03-06, accepted in 2014-06-24,  发布年份 2014
PDF
【 摘 要 】

Background

Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment.

Results

Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm2 of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm2 of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm-1 × sr-1) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone).

Conclusions

Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm matrices difficult. The combination of ultrasound and targeted UCAs can be used to enhance biofilm imaging and early detection. Our findings suggest that the combination of targeted UCAs and ultrasound is a novel molecular imaging technique for the detection of biofilms. We show that high-frequency acoustic microscopy provides sufficient spatial resolution for quantification of biofilm mechanoelastic properties.

【 授权许可】

   
2014 Anastasiadis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150403112222385.pdf 1908KB PDF download
Figure 6. 67KB Image download
Figure 5. 81KB Image download
Figure 4. 61KB Image download
Figure 3. 95KB Image download
Figure 2. 90KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Liu D, Lau YL, Chau YK, Pacepavicius G: Simple technique for estimation of biofilm accumulation. Bull Environ Contam Toxicol 1994, 53(6):913-918.
  • [2]Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P: Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. Fems Microbiol Letters 1998, 167(2):179-184.
  • [3]Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infections. Science 1999, 284(5418):1318-1322.
  • [4]Wingender J, Neu TR, Flemming HC: What are Bacterial Extracellular Substances? In Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. 1st edition. Edited by Wingender J, Neu TR, Flemming HC. Berlin: Springer; 1999:1-19.
  • [5]Strathmann M, Wingender J, Flemming HC: Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of pseudomonas aeruginosa. J Microbiol Methods 2002, 50(3):237-248.
  • [6]Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004, 2(2):95-108.
  • [7]Davey ME, GA O’T: Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000, 64(4):847-867.
  • [8]Flemming HC, Wingender J: The biofilm matrix. Nat Rev Microbiol 2010, 8(9):623-633.
  • [9]Lambe DW, Ferguson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW: Foreign-body-associated experimental osteomyelitis induced with bacteroides fragilis and staphylococcus epidermidis in rabbits. Clin Orthop Relat Res 1991, 266:285-294.
  • [10]Harris LG, Richards RG: Staphylococci and implant surfaces: a review. Injury-Int J Care Injured 2006, 37:3-14.
  • [11]Baldassarri L, Montanaro L, Creti R, Arciola CR: Underestimated collateral effects of antibiotic therapy in prosthesis-associated bacterial infections. Int J Artif Organs 2007, 30:786-791.
  • [12]Kaplan JB: Methods for the treatment and opinion prevention of bacterial biofilms. Expert Opinion Therap Patents 2005, 15(8):955-965.
  • [13]Sullam PM, Drake TA, Sande MA: Pathogenesis of endocarditis. Am J Med 1985, 78(6B):110-115.
  • [14]Caldwell DA, Lovasik D: Endocarditis in the immunocompromised. Am J Nurs 2002, (Suppl):32-36.
  • [15]Donlan RM, Costerton JW: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002, 15(2):167-193.
  • [16]Petti CA, Fowler VG Jr: Staphylococcus aureus bacteremia and endocarditis. Cardiol Clin 2003, 21(2):219-233. vii
  • [17]Nickel JC, Wright JB, Ruseska I, Marrie TJ, Whitfield C, Costerton JW: Antibiotic-resistance of pseudomonas-aeruginosa colonizing a urinary catheter invitro. Eur J Clin Microbiol Infect Dis 1985, 4(2):213-218.
  • [18]Allison DG, Gilbert P: Modification by surface association of antimicrobial susceptibility of bacterial-populations. J Ind Microbiol 1995, 15(4):311-317.
  • [19]Stewart PS, Costerton JW: Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358(9276):135-138.
  • [20]Parsek MR, Singh PK: Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 2003, 57:677-701.
  • [21]Furuya EY, Lowy FD: Antimicrobial strategies for the prevention and treatment of cardiovascular infections. Curr Opin Pharmacol 2003, 3(5):464-469.
  • [22]Durack DT, Lukes AS, Bright DK, Alberts MJ, Bashore TM, Corey GR, Douglas JM, Gray L, Harrell FE, Harrison JK, Heinle SA, Morris A, Kisslo JA, Nicely LM, Oldham N, Penning LM, Sexton DJ, Towns M, Waugh RA: New criteria for diagnosis of infective endocarditis - utilization of specific echocardiographic findings. Am J Med 1994, 96(3):200-209.
  • [23]Baddour LM, Bettmann MA, Bolger AF, Epstein AE, Ferrieri P, Gerber MA, Gewitz MH, Jacobs AK, Levison ME, Newburger JW, Pallasch TJ, Wilson WR, Baltimore RS, Falace DA, Shulman ST, Tani LY, Taubert KA: Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications. Circulation 2005, 112(15):2373.
  • [24]Shemesh H, Goertz DE, van der Sluis LW, de Jong N, Wu MK, Wesselink PR: High frequency ultrasound imaging of a single-species biofilm. J Dent 2007, 35(8):673-678.
  • [25]Vaidya K, Osgood R, Ren D, Pichichero ME, Helguera M: Ultrasound imaging and characterization of biofilms based on wavelet de-noised radiofrequency data. Ultrasound Med Biol 2014, 40(3):583-595.
  • [26]Good MS, Wend CF, Bond LJ, McLean JS, Panetta PD, Ahmed S, Crawford SL, Daly DS: An estimate of biofilm properties using an acoustic microscope. IEEE Trans Ultrason Ferroelectr Freq Control 2006, 53(9):1637-1646.
  • [27]Holmes AK, Laybourn-Parry J, Parry JD, Unwin ME, Challis RE: Ultrasonic imaging of biofilms utilizing echoes from the biofilm/air interface. IEEE Trans Ultrason Ferroelectr Freq Control 2006, 53(1):185-192.
  • [28]Kujundzic E, Fonseca AC, Evans EA, Peterson M, Greenberg AR, Hernandez M: Ultrasonic monitoring of early-stage biofilm growth on polymeric surfaces. J Microbiol Methods 2007, 68(3):458-467.
  • [29]Sbeity F, Menigot S, Charara J, Girault JM: Contrast improvement in sub- and ultraharmonic ultrasound contrast imaging by combining several hammerstein models. Int J Biomed Imag 2013, 2013:270523.
  • [30]Anderson CR, Hu X, Zhang H, Tlaxca J, Decleves A-E, Houghtaling R, Sharma K, Lawrence M, Ferrara KW, Rychak JJ: Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Investig Radiol 2011, 46(4):215-224.
  • [31]Klibanov AL: Microbubble contrast agents - targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Investig Radiol 2006, 41(3):354-362.
  • [32]Klibanov AL: Ultrasound molecular imaging with targeted microbubble contrast agents. J Nucl Cardiol 2007, 14(6):876-884.
  • [33]Klibanov AL: Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med Biol Eng Comput 2009, 47(8):875-882.
  • [34]Klibanov AL, Hughes MS, Villanueva FS, Jankowski RJ, Wagner WR, Wojdyla JK, Wible JH, Brandenburger GH: Targeting and ultrasound imaging of microbubble-based contrast agents. Magnet Reson Mat Biol Physics Med 1999, 8(3):177-184.
  • [35]Unnikrishnan S, Klibanov AL: Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol 2012, 199(2):292-299.
  • [36]Weiss EC, Anastasiadis P, Pilarczyk G, Lernor RM, Zinin PV: Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy. Ultrason Ferroelectr Frequen Contr IEEE Trans 2007, 54(11):2257-2271.
  • [37]Weiss EC, Lemor RM, Pilarczyk G, Anastasiadis P, Zinin PV: Imaging of focal contacts of chicken heart muscle cells by high-frequency acoustic microscopy. Ultrasound Med Biol 2007, 33(8):1320-1326.
  • [38]Zinin PV, Allen JS III: Deformation of biological cells in the acoustic field of an oscillating bubble. Phys Rev E 2009, 79(2 Pt 1):021910.
  • [39]Zinin PV, Allen JS 3rd, Levin VM: Mechanical resonances of bacteria cells. Phys Rev E Stat Nonlin Soft Matter Phys 2005, 72(6 Pt 1):061907.
  • [40]Moran CM, Watson RJ, Fox KAA, McDicken WN: In vitro acoustic characterisation of four intravenous ultrasonic contrast agents at 30 MHz. Ultrasound Med Biol 2002, 28(6):785-791.
  • [41]Inglis TJ: Evidence for dynamic phenomena in residual tracheal tube biofilm. Br J Anaesth 1993, 70(1):22-24.
  • [42]Goldstein IJ, Hayes CE: The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 1978, 35:127-340.
  • [43]Archibald LK, Gaynes RP: Hospital-acquired infections in the United States. The importance of interhospital comparisons. Infect Dis Clin North Am 1997, 11(2):245-255.
  • [44]Azzopardi EA, Ferguson EL, Thomas DW: The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother 2013, 68(2):257-274.
  • [45]Inglis TJJ, Titmeng L, Mahlee N, Eekoon T, Kokpheng H: Structural features of tracheal tube biofilm formed during prolonged mechanical ventilation. Chest 1995, 108(4):1049-1052.
  • [46]Al Akhrass F, Al Wohoush I, Chaftari AM, Reitzel R, Jiang Y, Ghannoum M, Tarrand J, Hachem R, Raad I: Rhodococcus bacteremia in cancer patients is mostly catheter related and associated with biofilm formation. Plos ONE 2012, 7(3):e32945.
  • [47]Hejsek L, Pasta J: Ultrasonographic biomicroscopy of the eye. Ultrazvukova? Biomikroskopie oka 2005, 61(4):273-280.
  • [48]Liang HD, Blomley MJK: The role of ultrasound in molecular imaging. Br J Radiol 2003, 76(suppl_2):S140-S150.
  • [49]Silverman RH: High-resolution ultrasound imaging of the eye - a review. Clinical Exper Ophthalmol 2009, 37(1):54-67.
  • [50]Silverman RH, Cannata J, Shung KK, Gal O, Patel M, Lloyd HO, Feleppa EJ, Coleman DJ: 75 MHz ultrasound biomicroscopy of anterior segment of eye. Ultrason Imaging 2006, 28(3):179-188.
  • [51]Snetkova YV, Levin VM, Petriniuk YS, Denisov AF, Bogachenkov AN, Denisova LA, Khramtzova YA: Application of the method of acoustic microscopy for the study of eye tissues. Morfologiya 2005, 127(2):72-75.
  • [52]Goertz DE, Frijlink ME, De Jong N, Steen A: Nonlinear intravascular ultrasound contrast imaging. Ultrasound Med Biol 2006, 32(4):491-502.
  • [53]Goertz DE, Frijlink ME, Tempel D, Bhagwandas V, Gisolf A, Krams R, de Jong N, van der Steen AFW: Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. Ultrasound Med Biol 2007, 33(12):1859-1872.
  • [54]Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA: Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery. IEEE Trans Ultrason Ferroelectr Freq Control 2012, 59(7):1596-1601.
  • [55]Witkin AJ, Fischer DH, Shields CL, Reichstein D, Shields JA: Enhanced depth imaging spectral-domain optical coherence tomography of a subtle choroidal metastasis. Eye 2012, 26(12):1598-1599.
  • [56]Knspik DA, Starkoski B, Pavlin CJ, Foster FS: A 100–200 MHz ultrasound biomicroscope. IEEE Trans Ultrason Ferroelectr Freq Control 2000, 47(6):1540-1549.
  • [57]Liu Y, Miyoshi H, Nakamura M: Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release 2006, 114(1):89-99.
  • [58]Saijo Y, Sasaki H, Okawai H, Nitta S-I, Tanaka M: Acoustic properties of atherosclerosis of human aorta obtained with high-frequency ultrasound. Ultrasound Med Biol 1998, 24(7):1061-1064.
  • [59]Saijo Y, Jorgensen CS, Falk E: Ultrasonic tissue characterization of collagen in lipid-rich plaques in apoE-deficient mice. Atherosclerosis 2001, 158(2):289-295.
  • [60]Saijo Y, Santos E, Sasaki H, Yambe T, Tanaka M, Hozumi N, Kobayashi K, Okada N: Ultrasonic tissue characterization of atherosclerosis by a speed-of-sound microscanning system. IEEE Trans Ultrason Ferroelectr Frequen Contr 2007, 54(8):1571-1577.
  • [61]Saijo Y, Miyakawa T, Sasaki H, Tanaka M, Nitta SI: Acoustic properties of aortic aneurysm obtained with scanning acoustic microscopy. Ultrasonics 2004, 42(1–9):695-698.
  • [62]Brand S, Solanki B, Foster DB, Czarnota GJ, Kolios MC: Monitoring of cell death in epithelial cells using high frequency ultrasound spectroscopy. Ultrasound Med Biol 2009, 35(3):482-493.
  • [63]Brand S, Weiss EC, Lemor RM, Kolios MC: High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound Med Biol 2008, 34(9):1396-1407.
  • [64]Strohm EM, Czarnota GJ, Kolios MC: Quantitative measurements of apoptotic cell properties using acoustic microscopy. IEEE Transactions Ultrason Ferroelectr Frequen Contr 2010, 57(10):2293-2304.
  • [65]Baddour RE, Sherar MD, Hunt JW, Czarnota GJ, Kolios MC: High-frequency ultrasound scattering from microspheres and single cells. J Acoust Soc Am 2005, 117(2):934-943.
  • [66]Saijo Y, Tanaka M, Okawai H, Sasaki H, Nitta SI, Dunn F: Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy. Ultrasound Med Biol 1997, 23(1):77-85.
  • [67]Baddour LM, Bettmann MA, Bolger AF, Epstein AE, Ferrieri P, Gerber MA, Gewitz MH, Jacobs AK, Levison ME, Newburger JW, Pallasch TJ, Wilson WR, Baltimore RS, Falace DA, Shulman ST, Tani LY, Taubert KA: Nonvalvular cardiovascular device-related infections. Circulation 2003, 108(16):2015-2031.
  • [68]DeDent AC, McAdow M, Schneewind O: Distribution of protein A on the surface of staphylococcus aureus. J Bacteriol 2007, 189(12):4473-4484.
  • [69]Schneewind O, Fowler A, Faull KF: Structure of the cell wall anchor of surface proteins in staphylococcus aureus. Science 1995, 268(5207):103-106.
  • [70]Oelze ML, O’Brien WD: Improved scatterer property estimates from ultrasound backscatter for small gate lengths using a gate-edge correction factor. J Acoust Soc Am 2004, 116(5):3212-3223.
  • [71]Briggs A: Advances in Acoustic Microscopy. New York: Plenum Press; 1995.
  • [72]Briggs A, Kolosov O: Acoustic Microscopy. New York: Clarendon; 2010.
  • [73]Briggs GAD, Rowe JM, Sinton AM, Spencer DS: Quantitative Methods in Acoustic Microscopy. In Ultrasonics Symposium Proceedings: 1988. Chicago, IL, USA: Publ by IEEE; 1988:743-749.
  • [74]Briggs GAD, Wang J, Gundle R: Quantitative acoustic microscopy of individual living human cells. J Microsc 1993, 172(Pt1):3-12.
  • [75]Martin G, Carroll ET: Tables of the speed of sound in water. J Acoustic Soc Am 1959, 31(1):75-76.
  • [76]Greenspan M, Tschiegg CE: Tables of the speed of sound in water. J Acoustic Soc Am 1959, 31(1):75-76.
  • [77]Akashi N, Kushibiki J, Dunn F: Acoustic properties of egg yolk and albumen range 20–400 MHz. J Acoust Soc Am 1997, 102(6):3774-3778.
  文献评价指标  
  下载次数:56次 浏览次数:25次