| Journal of Hematology & Oncology | |
| Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway | |
| He Huang2  Xiaohong Yu2  Jimin Shi2  Yi Luo2  Binsheng Wang2  Yongxian Hu2  Lizhen Liu2  Lixia Lou2  Yanjun Gu3  Kaimin Hu1  | |
| [1] Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China | |
| 关键词: Drug resistance; β-catenin; Bone marrow mesenchymal stromal cell (BM-MSC); Acute leukemia; Galectin-3; | |
| Others : 1133474 DOI : 10.1186/s13045-014-0099-8 |
|
| received in 2014-07-31, accepted in 2014-12-22, 发布年份 2015 | |
【 摘 要 】
Background
Acute leukemia is currently the major cause of death in hematological malignancies. Despite the rapid development of new therapies, minimal residual disease (MRD) continues to occur and leads to poor outcomes. The leukemia niche in the bone marrow microenvironment (BMM) is thought to be responsible for such MRD development, which can lead to leukemia drug resistance and disease relapse. Consequently further investigation into the way in which the leukemia niche interacts with acute leukemia cells (ALCs) and development of strategies to block the underlying process are expected to improve disease prognosis. Recent studies indicated that galectin-3 (gal-3) might play a pivotal role in this process. Thus we aimed to elucidate the exact role played by gal-3 in this process and clarify its mechanism of action.
Methods
We used human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) to mimic the leukemia BMM in vitro, and investigated their effects on drug resistance of ALCs and the possible mechanisms involved, with particular emphasis on the role of gal-3.
Results
In our study, we demonstrated that hBM-MSCs induced gal-3 up-regulation, promoting β-catenin stabilization and thus activating the Wnt/β-catenin signaling pathway in ALCs, which is critical in cytotoxic drug resistance of leukemia. This effect could be reversed by addition of gal-3 short hairpin RNA (shRNA). We also found that up-regulation of gal-3 promoted Akt and glycogen synthase kinase (GSK)-3β phosphorylation, thought to constitute a cross-bridge between gal-3 and Wnt signaling.
Conclusions
Our results suggest that gal-3, a key factor mediating BMM-induced drug resistance, could be a novel therapeutic target in acute leukemia.
【 授权许可】
2015 Hu et al.; licensee BioMed Central.
| Files | Size | Format | View |
|---|---|---|---|
| Figure 6. | 48KB | Image | |
| Figure 5. | 56KB | Image | |
| Figure 4. | 72KB | Image | |
| Figure 3. | 35KB | Image | |
| Figure 2. | 35KB | Image | |
| Figure 1. | 68KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Pui CH, Evans WE: Treatment of acute lymphoblastic leukemia. N Engl J Med 2006, 354(2):166-178.
- [2]Zhao Y, Huang H, Wei G: Novel agents and biomarkers for acute lymphoid leukemia. J Hematol Oncol 2013, 6:40. BioMed Central Full Text
- [3]Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al.: Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012, 366(12):1079-1089.
- [4]Estey EH: Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 2013, 88(4):318-327.
- [5]Kern W, Danhauser-Riedl S, Ratei R, Schnittger S, Schoch C, Kolb HJ, et al.: Detection of minimal residual disease in unselected patients with acute myeloid leukemia using multiparameter flow cytometry for definition of leukemia-associated immunophenotypes and determination of their frequencies in normal bone marrow. Haematologica 2003, 88(6):646-653.
- [6]Ladetto M, Bruggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al.: Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia 2014, 28(6):1299-1307.
- [7]Nagafuji K, Miyamoto T, Eto T, Kamimura T, Taniguchi S, Okamura T, et al.: Monitoring of minimal residual disease (MRD) is useful to predict prognosis of adult patients with Ph-negative ALL: results of a prospective study (ALL MRD2002 Study). J Hematol Oncol 2013, 6:14. BioMed Central Full Text
- [8]Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N: Bone marrow neoplastic niche in leukemia. Hematology 2014, 19(4):232-238.
- [9]Malfuson JV, Boutin L, Clay D, Thepenier C, Desterke C, Torossian F, et al.: SP/drug efflux functionality of hematopoietic progenitors is controlled by mesenchymal niche through VLA-4/CD44 axis. Leukemia 2014, 28(4):853-864.
- [10]Burger JA, Kipps TJ: CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006, 107(5):1761-1767.
- [11]Nwabo Kamdje AH, Mosna F, Bifari F, Lisi V, Bassi G, Malpeli G, et al.: Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood 2011, 118(2):380-389.
- [12]Sun Z, Wang S, Zhao RC: The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol 2014, 7:14. BioMed Central Full Text
- [13]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al.: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284(5411):143-147.
- [14]Dumic J, Dabelic S, Flogel M: Galectin-3: an open-ended story. Biochim Biophys Acta 2006, 1760(4):616-635.
- [15]Newlaczyl AU, Yu LG: Galectin-3-A jack-of-all-trades in cancer. Cancer Lett 2011, 313(2):123-128.
- [16]Yamamoto-Sugitani M, Kuroda J, Ashihara E, Nagoshi H, Kobayashi T, Matsumoto Y, et al.: Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia. Proc Natl Acad Sci U S A 2011, 108(42):17468-17473.
- [17]Fei F, Abdel-Azim H, Lim M, Arutyunyan A, von Itzstein M, Groffen J, et al.: Galectin-3 in pre-B acute lymphoblastic leukemia. Leukemia 2013, 27(12):2385-2388.
- [18]Cheng CL, Hou HA, Lee MC, Liu CY, Jhuang JY, Lai YJ, et al.: Higher bone marrow LGALS3 expression is an independent unfavorable prognostic factor for overall survival in patients with acute myeloid leukemia. Blood 2013, 121(16):3172-3180.
- [19]Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, et al.: Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res 2009, 69(4):1343-1349.
- [20]Kobayashi T, Shimura T, Yajima T, Kubo N, Araki K, Tsutsumi S, et al.: Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin. Int J Cancer 2011, 129(12):2775-2786.
- [21]Ge X, Wang X: Role of Wnt canonical pathway in hematological malignancies. J Hematol Oncol 2010, 3:33. BioMed Central Full Text
- [22]Staal F. Wnt Signaling Strength Regulates Normal Hematopoiesis and Its Deregulation Is Involved in Leukemia Development. Exp Hematol. 2012;40(8):S41–1.
- [23]Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJT: Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 2012, 26(3):414-421.
- [24]Yang Y, Mallampati S, Sun BH, Zhang J, Kim SB, Lee JS, et al.: Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett 2013, 333(1):9-17.
- [25]He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al.: Identification of c-MYC as a target of the APC pathway. Science 1998, 281(5382):1509-1512.
- [26]Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, et al.: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 1999, 96(10):5522-5527.
- [27]Minke KS, Staib P, Puetter A, Gehrke I, Gandhirajan RK, Schlosser A, et al.: Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells. Eur J Haematol 2009, 82(3):165-175.
- [28]Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC: Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Investig 2000, 106(4):533-539.
- [29]Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJH, Rubinfeld B, Polakis P, et al.: The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 1999, 18(18):2883-2891.
- [30]Araki Y, Okamura S, Hussain SP, Nagashima M, He PJ, Shiseki M, et al.: Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 2003, 63(3):728-734.
- [31]Lin HM, Pestell RG, Raz A, Kim HRC: Galectin-3 enhances cyclin D-1 promoter activity through SP1 and a cAMP-responsive element in human breast epithelial cells. Oncogene 2002, 21(52):8001-8010.
- [32]Wang YZ, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng ZH, et al.: The Wnt/beta-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML. Science 2010, 327(5973):1650-1653.
- [33]Morgan RG, Ridsdale J, Tonks A, Darley RL: Factors affecting the nuclear localization of beta-catenin in normal and malignant tissue. J Cell Biochem 2014, 115(8):1351-1361.
- [34]Yamaguchi K, Lee SH, Eling TE, Baek SJ: Identification of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) as a novel downstream target of phosphatidylinositol 3-kinase/AKT/GSK-3beta pathway. J Biol Chem 2004, 279(48):49617-49623.
- [35]Somervaille TC, Linch DC, Khwaja A: Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood 2001, 98(5):1374-1381.
- [36]Liu J, Han G, Liu H, Qin C: Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One 2013, 8(4):e62844.
- [37]Chauhan D, Li G, Podar K, Hideshima T, Neri P, He D, et al.: A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res 2005, 65(18):8350-8358.
- [38]Streetly MJ, Maharaj L, Joel S, Schey SA, Gribben JG, Cotter FE: GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood 2010, 115(19):3939-3948.
- [39]O'Brien S, Kay NE: Maintenance therapy for B-chronic lymphocytic leukemia. Clin Adv Hematol Oncol 2011, 9(1):22-31.
- [40]Clark MC, Pang M, Hsu DK, Liu FT, de Vos S, Gascoyne RD, et al.: Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death. Blood 2012, 120(23):4635-4644.
- [41]Liu GY, Xu Y, Li Y, Wang LH, Liu YJ, Zhu D: Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy 2013, 15(10):1208-1217.
- [42]Gutierrez SE, Romero-Oliva FA: Epigenetic changes: a common theme in acute myelogenous leukemogenesis. J Hematol Oncol 2013, 6:57. BioMed Central Full Text
- [43]Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D: The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell 2007, 27(6):992-1004.
- [44]Rosenfeld C, Goutner A, Venuat AM, Choquet C, Pico JL, Dore JF, et al.: An effect human leukaemic cell line: Reh. Eur J Cancer 1977, 13(4–5):377-379.
- [45]Clark SS, McLaughlin J, Timmons M, Pendergast AM, Ben-Neriah Y, Dow LW, et al.: Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science 1988, 239(4841 Pt 1):775-777.
- [46]Gillis S, Watson J: Biochemical and biological characterization of lymphocyte regulatory molecules. V. Identification of an interleukin 2-producing human leukemia T cell line. J Exp Med 1980, 152(6):1709-1719.
- [47]Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N: Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood 1991, 77(9):2031-2036.
- [48]Zhao YM, Li JY, Lan JP, Lai XY, Luo Y, Sun J, et al.: Cell cycle dependent telomere regulation by telomerase in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2008, 369(4):1114-1119.