| Journal of Biomedical Science | |
| Animal models of enterovirus 71 infection: applications and limitations | |
| Chun-Keung Yu1  Ya-Fang Wang2  | |
| [1] National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan;National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan | |
| 关键词: Pathogenesis; Animal models; Enterovirus 71; | |
| Others : 817730 DOI : 10.1186/1423-0127-21-31 |
|
| received in 2013-12-31, accepted in 2014-04-11, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models.
【 授权许可】
2014 Wang and Yu; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140711020604615.pdf | 360KB |
【 参考文献 】
- [1]Stanway G, Brown F, Christian P, Hovi T, Hyypia T, King AMQ, Knowles NJ, Lemon SM, Minor PD, Pallansch MA, Palmenberg AC, Skern T: Family Picornaviridae. In Virus Taxonomy Eighth Report of the International Committee on Taxonomy of Viruses. Edited by Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. San Diego: Elsevier Academic Press; 2005:757-778.
- [2]Schmidt NJ, Lennette EH, Ho HH: An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 1974, 129:304-309.
- [3]Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, Tsai SF, Wang JR, Shih SR: An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 1999, 341:929-935.
- [4]Landry ML, Fonseca SN, Cohen S, Bogue CW: Fatal enterovirus type 71 infection: rapid detection and diagnostic pitfalls. Pediatr Infect Dis J 1995, 14:1095-1100.
- [5]Chan LG, Parashar UD, Lye MS, Ong FG, Zaki SR, Alexander JP, Ho KK, Han LL, Pallansch MA, Suleiman AB, Jegathesan M, Anderson LJ: Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia: clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin Infect Dis 2000, 31:678-683.
- [6]Wang YF, Chou CT, Lei HY, Liu CC, Wang SM, Yan JJ, Su IJ, Wang JR, Yeh TM, Chen SH, Yu CK: A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 2004, 78:7916-7924.
- [7]McMinn PC: An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 2002, 26:91-107.
- [8]Lin MT, Wang JK, Lu FL, Wu ET, Yeh SJ, Lee WL, Wu JM, Wu MH: Heart rate variability monitoring in the detection of central nervous system complications in children with enterovirus infection. J Crit Care 2006, 21:280-286.
- [9]Liu L, Zhao H, Zhang Y, Wang J, Che Y, Dong C, Zhang X, Na R, Shi H, Jiang L, Wang L, Xie Z, Cui P, Xiong X, Liao Y, Zhao S, Gao J, Tang D, Li Q: Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection. Virology 2011, 412:91-100.
- [10]Hsiung GD: Chapter 14: Picornaviridae. In Hsiung’s Diagnostic Virology. 4th edition. Edited by Hsiung GD, Fong CKY, Landry ML. Yale University Press: New Haven; 1994:119-140.
- [11]Melnick JL: The discovery of the enteroviruses and the classification of poliovirus among them. Biologicals 1993, 21:305-309.
- [12]Chumakov M, Voroshilova M, Shindarov L, Lavrova I, Gracheva L, Koroleva G, Vasilenko S, Brodvarova I, Nikolova M, Gyurova S, Gacheva M, Mitov G, Ninov N, Tsylka E, Robinson I, Frolova M, Bashkirtsev V, Martiyanova L, Rodin V: Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol 1979, 60:329-340.
- [13]Zheng ZM, Zhang JH, Zhu WP, He PJ: Isolation of enterovirus type 71 from the vesicle fluid of an adult patient with hand-foot-mouth disease in China. Virol Sin 1989, 4:375-382.
- [14]Hashimoto I, Hagiwara A, Kodama H: Neurovirulence in cynomolgus monkeys of enterovirus 71 isolated from a patient with hand, foot and mouth disease. Arch Virol 1978, 56:257-261.
- [15]Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY: A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol 2004, 85:69-77.
- [16]Wang SM, Lei HY, Yu CK, Wang JR, Su IJ, Liu CC: Acute chemokine response in the blood and cerebrospinal fluid of children with enterovirus 71-associated brainstem encephalitis. J Infect Dis 2008, 198:1002-1006.
- [17]Wang SM, Lei HY, Liu CC: Cytokine immunopathogenesis of enterovirus 71 brain stem encephalitis. Clin Dev Immunol 2012, 2012:876241.
- [18]Wang SM, Liu CC, Tseng HW, Wang JR, Huang CC, Chen YJ, Yang YJ, Lin SJ, Yeh TF: Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis 1999, 29:184-190.
- [19]Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, Yeh TF: Neurologic complications in children with enterovirus 71 infection. N Engl J Med 1999, 341:936-942.
- [20]Lin TY, Chang LY, Hsia SH, Huang YC, Chiu CH, Hsueh C, Shih SR, Liu CC, Wu MH: The 1998 enterovirus 71 outbreak in Taiwan: pathogenesis and management. Clin Infect Dis 2002, 34(Suppl 2):S52-S57.
- [21]Hashimoto I, Hagiwara A: Pathogenicity of a poliomyelitis-like disease in monkeys infected orally with enterovirus 71: a model for human infection. Neuropathol Appl Neurobiol 1982, 8:149-156.
- [22]Nagata N, Shimizu H, Ami Y, Tano Y, Harashima A, Suzaki Y, Sato Y, Miyamura T, Sata T, Iwasaki T: Pyramidal and extrapyramidal involvement in experimental infection of cynomolgus monkeys with enterovirus 71. J Med Virol 2002, 67:207-216.
- [23]Nagata N, Iwasaki T, Ami Y, Tano Y, Harashima A, Suzaki Y, Sato Y, Hasegawa H, Sata T, Miyamura T, Shimizu H: Differential localization of neurons susceptible to enterovirus 71 and poliovirus type 1 in the central nervous system of cynomolgus monkeys after intravenous inoculation. J Gen Virol 2004, 85:2981-2989.
- [24]Lum LC, Wong KT, Lam SK, Chua KB, Goh AY: Neurogenic pulmonary oedema and enterovirus 71 encephalomyelitis. Lancet 1998, 352:1391.
- [25]Wong KT, Lum LC, Lam SK: Enterovirus 71 infection and neurologic complications. N Engl J Med 2000, 342:356-358.
- [26]Shieh WJ, Jung SM, Hsueh C, Kuo TT, Mounts A, Parashar U, Yang CF, Guarner J, Ksiazek TG, Dawson J, Goldsmith C, Chang GJ, Oberste SM, Pallansch MA, Anderson LJ, Zaki SR: Pathologic studies of fatal cases in outbreak of hand, foot, and mouth disease, Taiwan. Emerg Infect Dis 2001, 7:146-148.
- [27]Chang LY, Lin TY, Hsu KH, Huang YC, Lin KL, Hsueh C, Shih SR, Ning HC, Hwang MS, Wang HS, Lee CY: Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet 1999, 354:1682-1686.
- [28]Ho M: Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect 2000, 33:205-216.
- [29]Arita M, Shimizu H, Nagata N, Ami Y, Suzaki Y, Sata T, Iwasaki T, Miyamura T: Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol 2005, 86:1391-1401.
- [30]Arita M, Nagata N, Iwata N, Ami Y, Suzaki Y, Mizuta K, Iwasaki T, Sata T, Wakita T, Shimizu H: An attenuated strain of enterovirus 71 belonging to genotype a showed a broad spectrum of antigenicity with attenuated neurovirulence in cynomolgus monkeys. J Virol 2007, 81:9386-9395.
- [31]Zhang Y, Cui W, Liu L, Wang J, Zhao H, Liao Y, Na R, Dong C, Wang L, Xie Z, Gao J, Cui P, Zhang X, Li Q: Pathogenesis study of enterovirus 71 infection in rhesus monkeys. Lab Invest 2011, 91:1337-1350.
- [32]Chen H, Zhang Y, Yang E, Liu L, Che Y, Wang J, Zhao H, Tang D, Dong C, Yang L, Shen D, Wang X, Liao Y, Wang L, Na R, Liang Y, Li Q: The effect of enterovirus 71 immunization on neuropathogenesis and protein expression profiles in the thalamus of infected rhesus neonates. Virology 2012, 432:417-426.
- [33]Yu CK, Chen CC, Chen CL, Wang JR, Liu CC, Yan JJ, Su IJ: Neutralizing antibody provided protection against enterovirus type 71 lethal challenge in neonatal mice. J Biomed Sci 2000, 7:523-528.
- [34]Khong WX, Yan B, Yeo H, Tan EL, Lee JJ, Ng JK, Chow VT, Alonso S: A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol 2012, 86:2121-2131.
- [35]Chua BH, Phuektes P, Sanders SA, Nicholls PK, McMinn PC: The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol 2008, 89:1622-1632.
- [36]Arita M, Ami Y, Wakita T, Shimizu H: Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model. J Virol 2008, 82:1787-1797.
- [37]Fujii K, Nagata N, Sato Y, Ong KC, Wong KT, Yamayoshi S, Shimanuki M, Shitara H, Taya C, Koike S: Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc Natl Acad Sci U S A 2013, 110:14753-14758.
- [38]Chen CS, Yao YC, Lin SC, Lee YP, Wang YF, Wang JR, Liu CC, Lei HY, Yu CK: Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. J Virol 2007, 81:8996-9003.
- [39]Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, Wong KT: Pathologic characterization of a murine model of human enterovirus 71 encephalomyelitis. J Neuropathol Exp Neurol 2008, 67:532-542.
- [40]Liu ML, Lee YP, Wang YF, Lei HY, Liu CC, Wang SM, Su IJ, Wang JR, Yeh TM, Chen SH, Yu CK: Type I interferons protect mice against enterovirus 71 infection. J Gen Virol 2005, 86:3263-3269.
- [41]Lee YP, Wang YF, Wang JR, Huang SW, Yu CK: Enterovirus 71 blocks selectively type I interferon production through the 3C viral protein in mice. J Med Virol 2012, 84:1779-1789.
- [42]Yeh MT, Wang SW, Yu CK, Lin KH, Lei HY, Su IJ, Wang JR: A single nucleotide in stem loop II of 5′-untranslated region contributes to virulence of enterovirus 71 in mice. PLoS One 2011, 6:e27082.
- [43]Huang SW, Wang YF, Yu CK, Su IJ, Wang JR: Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology 2012, 422:132-143.
- [44]Wang W, Duo J, Liu J, Ma C, Zhang L, Wei Q, Qin C: A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice. Microbes Infect 2011, 13:862-870.
- [45]Caine EA, Partidos CD, Santangelo JD, Osorio JE: Adaptation of enterovirus 71 to adult interferon deficient mice. PLoS One 2013, 8:e59501.
- [46]Yao PP, Qian L, Xia Y, Xu F, Yang ZN, Xie RH, Li X, Liang WF, Huang XX, Zhu ZY, Zhu HP: Enterovirus 71-induced neurological disorders in young gerbils. Meriones unguiculatus: development and application of a neurological disease model. PLoS One 2012, 7:e51996.
- [47]JM B: Receptors. In The Picornavirus. Edited by Ehrenfeld E, Domingo E, Roos RP. Washington, DC: ASM Press; 2010:73-86.
- [48]Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H: Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 2009, 15:794-797.
- [49]Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S: Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 2009, 15:798-801.
- [50]Yang B, Chuang H, Yang KD: Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J 2009, 6:141. BioMed Central Full Text
- [51]Yang SL, Chou YT, Wu CN, Ho MS: Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol 2011, 85:11809-11820.
- [52]Liu J, Dong W, Quan X, Ma C, Qin C, Zhang L: Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. Arch Virol 2012, 157:539-543.
- [53]Laszik Z, Jansen PJ, Cummings RD, Tedder TF, McEver RP, Moore KL: P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood 1996, 88:3010-3021.
- [54]Lin YW, Yu SL, Shao HY, Lin HY, Liu CC, Hsiao KN, Chitra E, Tsou YL, Chang HW, Sia C, Chong P, Chow YH: Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS One 2013, 8:e57591.
- [55]Liu CC, Tseng HW, Wang SM, Wang JR, Su IJ: An outbreak of enterovirus 71 infection in Taiwan, 1998: epidemiologic and clinical manifestations. J Clin Virol 2000, 17:23-30.
- [56]Wang SM, Lei HY, Su LY, Wu JM, Yu CK, Wang JR, Liu CC: Cerebrospinal fluid cytokines in enterovirus 71 brain stem encephalitis and echovirus meningitis infections of varying severity. Clin Microbiol Infect 2007, 13:677-682.
- [57]Feng GG, Nishiwaki K, Kondo H, Shimada Y, Ishikawa N: Inhibition of fibrin-induced neurogenic pulmonary edema by previous unilateral left-vagotomy correlates with increased levels of brain nitric oxide synthase in the nucleus tractus solitarii of rats. Auton Neurosci 2002, 102:1-7.
- [58]Talman WT, Perrone MH, Reis DJ: Acute hypertension after the local injection of kainic acid into the nucleus tractus solitarii of rats. Circ Res 1981, 48:292-298.
- [59]Huang SW, Lee YP, Hung YT, Lin CH, Chuang JI, Lei HY, Su IJ, Yu CK: Exogenous interleukin-6, interleukin-13, and interferon-gamma provoke pulmonary abnormality with mild edema in enterovirus 71-infected mice. Respir Res 2011, 12:147. BioMed Central Full Text
- [60]Pliaka V, Kyriakopoulou Z, Markoulatos P: Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines 2012, 11:609-628.
- [61]Dong C, Liu L, Zhao H, Wang J, Liao Y, Zhang X, Na R, Liang Y, Wang L, Li Q: Immunoprotection elicited by an enterovirus type 71 experimental inactivated vaccine in mice and rhesus monkeys. Vaccine 2011, 29:6269-6275.
- [62]Chen CW, Lee YP, Wang YF, Yu CK: Formaldehyde-inactivated human enterovirus 71 vaccine is compatible for co-immunization with a commercial pentavalent vaccine. Vaccine 2011, 29:2772-2776.
- [63]Bek EJ, Hussain KM, Phuektes P, Kok CC, Gao Q, Cai F, Gao Z, McMinn PC: Formalin-inactivated vaccine provokes cross-protective immunity in a mouse model of human enterovirus 71 infection. Vaccine 2011, 29:4829-4838.
- [64]Ong KC, Devi S, Cardosa MJ, Wong KT: Formaldehyde-inactivated whole-virus vaccine protects a murine model of enterovirus 71 encephalomyelitis against disease. J Virol 2010, 84:661-665.
- [65]Wang M, Jiang S, Wang Y: Recombinant VP1 protein expressed in Pichia pastoris induces protective immune responses against EV71 in mice. Biochem Biophys Res Commun 2013, 430:387-393.
- [66]Ch’ng WC, Saw WT, Yusoff K, Shafee N: Immunogenicity of a truncated enterovirus 71 VP1 protein fused to a Newcastle disease virus nucleocapsid protein fragment in mice. Acta Virol 2011, 55:227-233.
- [67]Premanand B, Prabakaran M, Kiener TK, Kwang J: Recombinant baculovirus associated with bilosomes as an oral vaccine candidate against HEV71 infection in mice. PLoS One 2013, 8:e55536.
- [68]Lin YL, Yu CI, Hu YC, Tsai TJ, Kuo YC, Chi WK, Lin AN, Chiang BL: Enterovirus type 71 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles. Vaccine 2012, 30:1305-1312.
- [69]Tung WS, Bakar SA, Sekawi Z, Rosli R: DNA vaccine constructs against enterovirus 71 elicit immune response in mice. Genet Vaccines Ther 2007, 5:6. BioMed Central Full Text
- [70]Wu CN, Lin YC, Fann C, Liao NS, Shih SR, Ho MS: Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 2001, 20:895-904.
- [71]Liu JN, Wang W, Duo JY, Hao Y, Ma CM, Li WB, Lin SZ, Gao XZ, Liu XL, Xu YF, Xu WB, Qin C, Zhang LF: Combined peptides of human enterovirus 71 protect against virus infection in mice. Vaccine 2010, 28:7444-7451.
- [72]Chiu CH, Chu C, He CC, Lin TY: Protection of neonatal mice from lethal enterovirus 71 infection by maternal immunization with attenuated Salmonella enterica serovar Typhimurium expressing VP1 of enterovirus 71. Microbes Infect 2006, 8:1671-1678.
- [73]Wu TC, Wang YF, Lee YP, Wang JR, Liu CC, Wang SM, Lei HY, Su IJ, Yu CK: Immunity to avirulent enterovirus 71 and coxsackie A16 virus protects against enterovirus 71 infection in mice. J Virol 2007, 81:10310-10315.
- [74]Chang HW, Lin YW, Ho HM, Lin MH, Liu CC, Shao HY, Chong P, Sia C, Chow YH: Protective efficacy of VP1-specific neutralizing antibody associated with a reduction of viral load and pro-inflammatory cytokines in human SCARB2-transgenic mice. PLoS One 2013, 8:e69858.
- [75]Wong TW, Huang HJ, Wang YF, Lee YP, Huang CC, Yu CK: Methylene blue-mediated photodynamic inactivation as a novel disinfectant of enterovirus 71. J Antimicrob Chemother 2010, 65:2176-2182.
- [76]Han JF, Cao RY, Deng YQ, Tian X, Jiang T, Qin ED, Qin CF: Antibody dependent enhancement infection of enterovirus 71 in vitro and in vivo. Virol J 2011, 8:106. BioMed Central Full Text
- [77]Chen IC, Wang SM, Yu CK, Liu CC: Subneutralizing antibodies to enterovirus 71 induce antibody-dependent enhancement of infection in newborn mice. Med Microbiol Immunol 2013, 202:259-265.
- [78]Ch’ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N: Partial protection against enterovirus 71 (EV71) infection in a mouse model immunized with recombinant Newcastle disease virus capsids displaying the EV71 VP1 fragment. J Med Virol 2011, 83:1783-1791.
- [79]Rotbart HA, Webster AD: Treatment of potentially life-threatening enterovirus infections with pleconaril. Clin Infect Dis 2001, 32:228-235.
- [80]Zhang G, Zhou F, Gu B, Ding C, Feng D, Xie F, Wang J, Zhang C, Cao Q, Deng Y, Hu W, Yao K: In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol 2012, 157(4):669-679.
- [81]Li ZH, Li CM, Ling P, Shen FH, Chen SH, Liu CC, Yu CK, Chen SH: Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication. J Infect Dis 2008, 197:854-857.
- [82]Zhang X, Song Z, Qin B, Chen L, Hu Y, Yuan Z: Rupintrivir is a promising candidate for treating severe cases of enterovirus-71 infection: evaluation of antiviral efficacy in a murine infection model. Antiviral Res 2013, 97:264-269.
- [83]Hung HC, Wang HC, Shih SR, Teng IF, Tseng CP, Hsu JT: Synergistic inhibition of enterovirus 71 replication by interferon and rupintrivir. J Infect Dis 2011, 203:1784-1790.
- [84]Tan EL, Tan TM, Tak Kwong Chow V, Poh CL: Inhibition of enterovirus 71 in virus-infected mice by RNA interference. Mol Ther 2007, 15:1931-1938.
- [85]Brock JH: The physiology of lactoferrin. Biochem Cell Biol 2002, 80:1-6.
- [86]Lin TY, Chu C, Chiu CH: Lactoferrin inhibits enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. J Infect Dis 2002, 186:1161-1164.
- [87]Weng TY, Chen LC, Shyu HW, Chen SH, Wang JR, Yu CK, Lei HY, Yeh TM: Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res 2005, 67:31-37.
- [88]Chen HL, Wang LC, Chang CH, Yen CC, Cheng WT, Wu SC, Hung CM, Kuo MF, Chen CM: Recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonatal mice from a lethal challenge with enterovirus type 71. Vaccine 2008, 26:891-898.
- [89]McMinn PC: Recent advances in the molecular epidemiology and control of human enterovirus 71 infection. Curr Opin Virol 2012, 2:199-205.
- [90]Zhu FC, Meng FY, Li JX, Li XL, Mao QY, Tao H, Zhang YT, Yao X, Chu K, Chen QH, Hu YM, Wu X, Liu P, Zhu LY, Gao F, Jin H, Chen YJ, Dong YY, Liang YC, Shi NM, Ge HM, Liu L, Chen SG, Ai X, Zhang ZY, Ji YG, Luo FJ, Chen XQ, Zhang Y, Zhu LW, Liang ZL, Shen XL: Efficacy, safety, and immunology of an inactivated alum-adjuvant enterovirus 71 vaccine in children in China: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2013, 381:2024-2032.
- [91]Huang SW, Hsu YW, Smith DJ, Kiang D, Tsai HP, Lin KH, Wang SM, Liu CC, Su IJ, Wang JR: Reemergence of enterovirus 71 in 2008 in taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol 2009, 47:3653-3662.
- [92]McWilliam Leitch EC, Cabrerizo M, Cardosa J, Harvala H, Ivanova OE, Koike S, Kroes AC, Lukashev A, Perera D, Roivainen M, Susi P, Trallero G, Evans DJ, Simmonds P: The association of recombination events in the founding and emergence of subgenogroup evolutionary lineages of human enterovirus 71. J Virol 2012, 86:2676-2685.
PDF