期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
The multiple facets of drug resistance: one history, different approaches
Jorge Henrique Neves1  Adam Arai Martens1  Marcel Shiniti Urabayashi1  Paula Rezende-Teixeira1  Marcelo Medina de Souza1  Beatriz Araujo Cortez1  Camila Lauand1  Bianca Rocha-Sales1  Evandro Luís Niero1 
[1] Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
关键词: Cancer stem cells;    3D cell culture;    Cell death;    Multidrug resistance;    Chemoresistance;   
Others  :  802785
DOI  :  10.1186/1756-9966-33-37
 received in 2014-02-06, accepted in 2014-03-20,  发布年份 2014
PDF
【 摘 要 】

Some cancers like melanoma and pancreatic and ovarian cancers, for example, commonly display resistance to chemotherapy, and this is the major obstacle to a better prognosis of patients. Frequently, literature presents studies in monolayer cell cultures, 3D cell cultures or in vivo studies, but rarely the same work compares results of drug resistance in different models. Several of these works are presented in this review and show that usually cells in 3D culture are more resistant to drugs than monolayer cultured cells due to different mechanisms. Searching for new strategies to sensitize different tumors to chemotherapy, many methods have been studied to understand the mechanisms whereby cancer cells acquire drug resistance. These methods have been strongly advanced along the years and therapies using different drugs have been increasingly proposed to induce cell death in resistant cells of different cancers. Recently, cancer stem cells (CSCs) have been extensively studied because they would be the only cells capable of sustaining tumorigenesis. It is believed that the resistance of CSCs to currently used chemotherapeutics is a major contributing factor in cancer recurrence and later metastasis development. This review aims to appraise the experimental progress in the study of acquired drug resistance of cancer cells in different models as well as to understand the role of CSCs as the major contributing factor in cancer recurrence and metastasis development, describing how CSCs can be identified and isolated.

【 授权许可】

   
2014 Niero et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708031255886.pdf 1100KB PDF download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Christakis P: The birth of chemotherapy at Yale. Bicentennial lecture series: Surgery Grand Round. Yale J Biol Med 2011, 84:169-172.
  • [2]Miller DR: A tribute to Sidney Farber– the father of modern chemotherapy. Br J Haematol 2006, 134:20-26.
  • [3]Frei E, Freireich E, Gehan E: Studies of sequential and combination antimetabolite therapy in acute leukemia: 6-mercaptopurine and methotrexate. Blood 1961, 18:431-454.
  • [4]Freireich E, Gehan E: The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: a model for evaluation of other potentially useful therapy. Blood 1963, 21:699-716.
  • [5]Frei E, Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J, Selawry O, Holland JF, Hoogstraten B, Wolman IJ, Abir E, Sawitsky A, Lee S, Mills SD, Burgert EO, Spurr CL, Patterson RB, Ebaugh FG, James GW, Moon JH: The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 1965, 26:642-656.
  • [6]DeVita VT, Chu E: A history of cancer chemotherapy. Cancer Res 2008, 68:8643-8653.
  • [7]LAW LW: Origin of the resistance of leukaemic cells to folic acid antagonists. Nature 1952, 169:628-629.
  • [8]Luria SE, Delbrück M: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943, 28:491-511.
  • [9]Chen Y, Liu H, Wu W, Li Y, Li J: Osteopontin genetic variants are associated with overall survival in advanced non-small-cell lung cancer patients and bone metastasis. J Exp Clin Cancer Res 2013, 32:45. BioMed Central Full Text
  • [10]Wang N, Zhang H, Yao Q, Wang Y, Dai S, Yang X: TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer. J Exp Clin Cancer Res 2012, 31:6. BioMed Central Full Text
  • [11]Wang G, Zhang J, Liu L, Sharma S, Dong Q: Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PLoS One 2012, 7:e51764.
  • [12]Goldenberg GJ, Begleiter A: Membrane transport of alkylating agents. Pharmacol Ther 1980, 8:237-274.
  • [13]Fry DW, Jackson RC: Membrane transport alterations as a mechanism of resistance to anticancer agents. Cancer Surv 1986, 5:47-79.
  • [14]Kessel D, Botterill V, Wodinsky I: Uptake and retention of daunomycin by mouse leukemic cells as factors in drug response. Cancer Res 1968, 28:938-941.
  • [15]Nowell PC: The clonal evolution of tumor cell populations. Science 1976, 194:23-28.
  • [16]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367:645-648.
  • [17]Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730-737.
  • [18]Visvader JE, Lindeman GJ: Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012, 10:717-728.
  • [19]Bai J, Sui J, Demirjian A, Vollmer CM, Marasco W, Callery MP: Predominant Bcl-XL knockdown disables antiapoptotic mechanisms: tumor necrosis factor-related apoptosis-inducing ligand-based triple chemotherapy overcomes chemoresistance in pancreatic cancer cells in vitro. Cancer Res 2005, 65:2344-2352.
  • [20]Wang W, Cassidy J: Constitutive nuclear factor-kappa B mRNA, protein overexpression and enhanced DNA-binding activity in thymidylate synthase inhibitor-resistant tumour cells. Br J Cancer 2003, 88:624-629.
  • [21]Wang W, McLeod HL, Cassidy J: Disulfiram-mediated inhibition of NF-kappaB activity enhances cytotoxicity of 5-fluorouracil in human colorectal cancer cell lines. Int J Cancer 2003, 104:504-511.
  • [22]Januchowski R, Wojtowicz K, Sujka-Kordowska P, Andrzejewska M, Zabel M: MDR gene expression analysis of six drug-resistant ovarian cancer cell lines. Biomed Res Int 2013, 2013:241763.
  • [23]Krishan A, Fitz CM, Andritsch I: Drug retention, efflux, and resistance in tumor cells. Cytometry 1997, 29:279-285.
  • [24]Aran JM, Gottesman MM, Pastan I: Drug-selected coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector. Proc Natl Acad Sci U S A 1994, 91:3176-3180.
  • [25]Munoz M, Henderson M, Haber M, Norris M: Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life 2007, 59:752-757.
  • [26]Abdulhussein AA, Wallace HM: Polyamines and membrane transporters. Amino Acids 2013, 46:655-660.
  • [27]Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC: Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987, 84:7735-7738.
  • [28]Jelly ND, Hussain II, Eremin J, Eremin O, El-Sheemy M: The stem cell factor antibody enhances the chemotherapeutic effect of adriamycin on chemoresistant breast cancer cells. Cancer Cell Int 2012, 12:21. BioMed Central Full Text
  • [29]Kalalinia F, Elahian F, Hassani M, Kasaeeian J, Behravan J: Phorbol ester TPA modulates chemoresistance in the drug sensitive breast cancer cell line MCF-7 by inducing expression of drug efflux transporter ABCG2. Asian Pac J Cancer Prev 2012, 13:2979-2984.
  • [30]Ferreira PA, Ruela-de-Sousa RR, Queiroz KCS, Souza ACS, Milani R, Pilli RA, Peppelenbosch MP, den Hertog J, Ferreira CV: Knocking down low molecular weight protein tyrosine phosphatase (LMW-PTP) reverts chemoresistance through inactivation of Src and Bcr-Abl proteins. PLoS One 2012, 7:e44312.
  • [31]Van Oosterwijk JG, Herpers B, Meijer D, Briaire-de Bruijn IH, Cleton-Jansen AM, Gelderblom H, van de Water B, Bovée JVMG: Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance. Ann Oncol 2012, 23:1617-1626.
  • [32]Sui H, Fan Z-Z, Li Q: Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells. J Int Med Res 2012, 40:426-435.
  • [33]Zöchbauer-Müller S, Filipits M, Rudas M, Brunner R, Krajnik G, Suchomel R, Schmid K, Pirker R: P-glycoprotein and MRP1 expression in axillary lymph node metastases of breast cancer patients. Anticancer Res 2001, 21:119-124.
  • [34]dit Faute MA, Laurent L, Ploton D, Poupon M-F, Jardillier J-C, Bobichon H: Distinctive alterations of invasiveness, drug resistance and cell-cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. Clin Exp Metastasis 2002, 19:161-168.
  • [35]Shi Y, Liu C, Liu X, Tang DG, Wang J: The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells. PLoS One 2014, 9:e90022.
  • [36]Markova SM, Kroetz DL: ABCC4 is regulated by microRNA-124a and microRNA-506. Biochem Pharmacol 2014, 87:515-522.
  • [37]Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, Wang Y, Chen Q, Zhao X, Zhou M, Cui Z, Zheng Z, Wang E, Wei M: MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 2013, 139:717-730.
  • [38]Skulachev VP: Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 1998, 423:275-280.
  • [39]Fichtinger-Schepman AM, van Oosterom AT, Lohman PH, Berends F: cis-Diamminedichloroplatinum (II)-induced DNA adducts in peripheral leukocytes from seven cancer patients: quantitative immunochemical detection of the adduct induction and removal after a single dose of cis-diamminedichloroplatinum (II). Cancer Res 1987, 47:3000-3004.
  • [40]Reed E, Litterst CL, Thill CC, Yuspa SH, Poirier MC: cis-Diamminedichloroplatinum (II)-DNA adduct formation in renal, gonadal, and tumor tissues of male and female rats. Cancer Res 1987, 47:718-722.
  • [41]Eckstein N: Platinum resistance in breast and ovarian cancer cell lines. J Exp Clin Cancer Res 2011, 30:91. BioMed Central Full Text
  • [42]De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J: Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A 1981, 78:5608-5612.
  • [43]Long BH, Fairchild CR: Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telophase. Cancer Res 1994, 54:4355-4361.
  • [44]Wallace-Brodeur RR, Lowe SW: Clinical implications of p53 mutations. Cell Mol Life Sci 1999, 55:64-75.
  • [45]Satyamoorthy K, Bogenrieder T, Herlyn M: No longer a molecular black box–new clues to apoptosis and drug resistance in melanoma. Trends Mol Med 2001, 7:191-194.
  • [46]Karin M, Cao Y, Greten FR, Li Z-W: NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002, 2:301-310.
  • [47]Lee DH, Macintyre JP, Taylor GR, Wang E, Plante RK, Tam SS, Pope BL, Lau CY: Tepoxalin enhances the activity of an antioxidant, pyrrolidine dithiocarbamate, in attenuating tumor necrosis factor alpha-induced apoptosis in WEHI 164 cells. J Pharmacol Exp Ther 1999, 289:1465-1471.
  • [48]Pahl HL: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999, 18:6853-6866.
  • [49]Voboril R, Hochwald SN, Li J, Brank A, Weberova J, Wessels F, Moldawer LL, Camp ER, MacKay SLD: Inhibition of NF-kappa B augments sensitivity to 5-fluorouracil/folinic acid in colon cancer. J Surg Res 2004, 120:178-188.
  • [50]El-Rayes BF, Ali S, Ali IF, Philip PA, Abbruzzese J, Sarkar FH: Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-kappaB. Cancer Res 2006, 66:10553-10559.
  • [51]Arlt A, Gehrz A, Müerköster S, Vorndamm J, Kruse M, Fölsch UR, Schäfer H: Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 2003, 22:3243-3251.
  • [52]Banerjee S, Wang Z, Kong D, Sarkar FH: 3,3′-Diindolylmethane enhances chemosensitivity of multiple chemotherapeutic agents in pancreatic cancer. Cancer Res 2009, 69:5592-5600.
  • [53]Müerköster S, Arlt A, Witt M, Gehrz A, Haye S, March C, Grohmann F, Wegehenkel K, Kalthoff H, Fölsch UR, Schäfer H: Usage of the NF-kappaB inhibitor sulfasalazine as sensitizing agent in combined chemotherapy of pancreatic cancer. Int J Cancer 2003, 104:469-476.
  • [54]Long J, Zhang Y, Yu X, Yang J, LeBrun DG, Chen C, Yao Q, Li M: Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets 2011, 15:817-828.
  • [55]Wang Y-W, Wang S-J, Zhou Y-N, Pan S-H, Sun B: Escin augments the efficacy of gemcitabine through down-regulation of nuclear factor-κB and nuclear factor-κB-regulated gene products in pancreatic cancer both in vitro and in vivo. J Cancer Res Clin Oncol 2012, 138:785-797.
  • [56]Xiao G, Wei J: Effects of beta-Aescin on the expression of nuclear factor-kappaB and tumor necrosis factor-alpha after traumatic brain injury in rats. J Zhejiang Univ Sci B 2005, 6:28-32.
  • [57]Harikumar KB, Sung B, Pandey MK, Guha S, Krishnan S, Aggarwal BB: Escin, a pentacyclic triterpene, chemosensitizes human tumor cells through inhibition of nuclear factor-kappaB signaling pathway. Mol Pharmacol 2010, 77:818-827.
  • [58]Patlolla JMR, Raju J, Swamy MV, Rao CV: Beta-escin inhibits colonic aberrant crypt foci formation in rats and regulates the cell cycle growth by inducing p21(waf1/cip1) in colon cancer cells. Mol Cancer Ther 2006, 5:1459-1466.
  • [59]Tan SM, Li F, Rajendran P, Kumar AP, Hui KM, Sethi G: Identification of beta-escin as a novel inhibitor of signal transducer and activator of transcription 3/Janus-activated kinase 2 signaling pathway that suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells. J Pharmacol Exp Ther 2010, 334:285-293.
  • [60]Ji DB, Xu B, Liu JT, Ran FX, Cui JR: β-Escin sodium inhibits inducible nitric oxide synthase expression via downregulation of the JAK/STAT pathway in A549 cells. Mol Carcinog 2011, 50:945-960.
  • [61]Shen D-Y, Kang J-H, Song W, Zhang W-Q, Li W-G, Zhao Y, Chen Q-X: Apoptosis of human cholangiocarcinoma cell lines induced by β-escin through mitochondrial caspase-dependent pathway. Phytother Res 2011, 25:1519-1526.
  • [62]Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O’Flaherty JD, Fennell DA, Richard D, O’Leary JJ, O’Byrne KJ: Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS One 2013, 8:e54193.
  • [63]Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH: Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 2005, 65:6934-6942.
  • [64]Fraser M, Leung B, Jahani-Asl A, Yan X, Thompson WE, Tsang BK: Chemoresistance in human ovarian cancer: the role of apoptotic regulators. Reprod Biol Endocrinol 2003, 1:66. BioMed Central Full Text
  • [65]Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Kawagoe J, Takahashi K, Yada-Hashimoto N, Seino-Noda H, Sakata M, Motoyama T, Kurachi H, Testa JR, Tasaka K, Murata Y: Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Clin Cancer Res 2004, 10:7645-7654.
  • [66]Nakanishi C, Toi M: Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 2005, 5:297-309.
  • [67]Kim S-H, Juhnn Y-S, Song Y-S: Akt involvement in paclitaxel chemoresistance of human ovarian cancer cells. Ann N Y Acad Sci 2007, 1095:82-89.
  • [68]Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, Price JE: Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 2005, 11:7490-7498.
  • [69]Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N: Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 2005, 224:53-65.
  • [70]Li M, Zhang Z, Hill DL, Wang H, Zhang R: Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res 2007, 67:1988-1996.
  • [71]Zambonin L, Caliceti C, Vieceli Dalla Sega F, Fiorentini D, Hrelia S, Landi L, Prata C: Dietary phenolic acids act as effective antioxidants in membrane models and in cultured cells, exhibiting proapoptotic effects in leukaemia cells. Oxid Med Cell Longev 2012, 2012:839298.
  • [72]Niero ELDO, Machado-Santelli GM: Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J Exp Clin Cancer Res 2013, 32:31. BioMed Central Full Text
  • [73]Tomizawa A, Kanno S, Osanai Y, Goto A, Sato C, Yomogida S, Ishikawa M: Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells. Oncol Rep 2013, 29:425-429.
  • [74]Yang Y-I, Lee K-T, Park H-J, Kim TJ, Choi YS, Shih I-M, Choi J-H: Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway. Carcinogenesis 2012, 33:2488-2498.
  • [75]Arafa E-SA, Zhu Q, Barakat BM, Wani G, Zhao Q, El-Mahdy MA, Wani AA: Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res 2009, 69:8910-8917.
  • [76]Datta S, Brunet A, Greenberg M: Cellular survival: a play in three Akts. Genes Dev 1999, 13:2905-2927.
  • [77]Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV, Cheng JQ: Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 2000, 19:2324-2330.
  • [78]Sun M, Wang G, Paciga JE, Feldman RI, Yuan ZQ, Ma XL, Shelley SA, Jove R, Tsichlis PN, Nicosia SV, Cheng JQ: AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol 2001, 159:431-437.
  • [79]Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY, Shelley SA, Nicosia SV, Cheng JQ: Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 2001, 61:5985-5991.
  • [80]Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, Seeger JM, Weiss J, Fischer F, Frommolt P, Michel K, Peifer M, Mermel C, Girard L, Peyton M, Gazdar AF, Minna JD, Garraway LA, Kashkar H, Pao W, Meyerson M, Thomas RK: PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res 2009, 69:3256-3261.
  • [81]O’Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O’Donovan N, Slamon DJ: Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther 2010, 9:1489-1502.
  • [82]Chen K-F, Chen H-L, Tai W-T, Feng W-C, Hsu C-H, Chen P-J, Cheng A-L: Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 2011, 337:155-161.
  • [83]Lin F-C, Liu Y-P, Lai C-H, Shan Y-S, Cheng H-C, Hsu P-I, Lee C-H, Lee Y-C, Wang H-Y, Wang C-H, Cheng JQ, Hsiao M, Lu P-J: RUNX3-mediated transcriptional inhibition of Akt suppresses tumorigenesis of human gastric cancer cells. Oncogene 2012, 31:4302-4316.
  • [84]Zheng Y, Wang R, Song H-Z, Pan B-Z, Zhang Y-W, Chen L-B: Epigenetic downregulation of RUNX3 by DNA methylation induces docetaxel chemoresistance in human lung adenocarcinoma cells by activation of the AKT pathway. Int J Biochem Cell Biol 2013, 45:1-10.
  • [85]Liu B-N, Yan H-Q, Wu X, Pan Z-H, Zhu Y, Meng Z-W, Zhou Q-H, Xu K: Apoptosis induced by benzyl isothiocyanate in gefitinib-resistant lung cancer cells is associated with Akt/MAPK pathways and generation of reactive oxygen species. Cell Biochem Biophys 2013, 66:81-92.
  • [86]Gao A-M, Ke Z-P, Wang J-N, Yang J-Y, Chen S-Y, Chen H: Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 2013, 34:1806-1814.
  • [87]Frisch SM, Francis H: Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994, 124:619-626.
  • [88]Stoker M, O’Neill C, Berryman S, Waxman V: Anchorage and growth regulation in normal and virus-transformed cells. Int J Cancer 1968, 3:683-693.
  • [89]Liotta LA, Kohn E: Anoikis: cancer and the homeless cell. Nature 2004, 430:973-974.
  • [90]Frisch SM, Screaton RA: Anoikis mechanisms. Curr Opin Cell Biol 2001, 13:555-562.
  • [91]Martin SS, Leder P: Human MCF10A mammary epithelial cells undergo apoptosis following actin depolymerization that is independent of attachment and rescued by Bcl-2. Mol Cell Biol 2001, 21:6529-6536.
  • [92]Schmidt M, Hövelmann S, Beckers TL, Ho S: A novel form of constitutively active farnesylated Akt1 prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis. Br J Cancer 2002, 87:924-932.
  • [93]Duxbury MS, Ito H, Benoit E, Waseem T, Ashley SW, Whang EE: A novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells. Cancer Res 2004, 64:3987-3993.
  • [94]Díaz-Montero CM, McIntyre BW: Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents. BMC Cancer 2005, 5:39. BioMed Central Full Text
  • [95]Cittelly DM, Dimitrova I, Howe EN, Cochrane DR, Jean A, Spoelstra NS, Post MD, Lu X, Broaddus RR, Spillman MA, Richer JK: Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel. Mol Cancer Ther 2012, 11:2556-2565.
  • [96]Lindquist S, Craig EA: The heat-shock proteins. Annu Rev Genet 1988, 22:631-677.
  • [97]Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU: Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 1994, 370:111-117.
  • [98]Hernández MP, Chadli A, Toft DO: HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 2002, 277:11873-11881.
  • [99]Jeong C-H, Park HB, Jang WJ, Jung SH, Seo YH: Discovery of hybrid Hsp90 inhibitors and their anti-neoplastic effects against gefitinib-resistant non-small cell lung cancer (NSCLC). Bioorg Med Chem Lett 2014, 24:224-227.
  • [100]Sang J, Acquaviva J, Friedland JC, Smith DL, Sequeira M, Zhang C, Jiang Q, Xue L, Lovly CM, Jimenez J-P, Shaw AT, Doebele RC, He S, Bates RC, Camidge DR, Morris SW, El-Hariry I, Proia DA: Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov 2013, 3:430-443.
  • [101]Ono N, Yamazaki T, Tsukaguchi T, Fujii T, Sakata K, Suda A, Tsukuda T, Mio T, Ishii N, Kondoh O, Aoki Y: Enhanced antitumor activity of erlotinib in combination with the Hsp90 inhibitor CH5164840 against non-small-cell lung cancer. Cancer Sci 2013, 104:1346-1352.
  • [102]Gallerne C, Prola A, Lemaire C: Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. Biochim Biophys Acta 1833, 2013:1356-1366.
  • [103]Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000, 2:469-475.
  • [104]Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES: Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2000, 2:476-483.
  • [105]Grem JL, Morrison G, Guo X-D, Agnew E, Takimoto CH, Thomas R, Szabo E, Grochow L, Grollman F, Hamilton JM, Neckers L, Wilson RH: Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 2005, 23:1885-1893.
  • [106]Whetstone H, Lingwood C: 3′Sulfogalactolipid binding specifically inhibits Hsp70 ATPase activity in vitro. Biochemistry 2003, 42:1611-1617.
  • [107]Rérole A-L, Gobbo J, De Thonel A, Schmitt E, Pais de Barros JP, Hammann A, Lanneau D, Fourmaux E, Deminov O, Micheau O, Lagrost L, Colas P, Kroemer G, Garrido C: Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res 2011, 71:484-495.
  • [108]Endo H, Yano M, Okumura Y, Kido H: Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell Death Dis 2014, 5:e1027.
  • [109]Sterrenberg JN, Blatch GL, Edkins AL: Human DNAJ in cancer and stem cells. Cancer Lett 2011, 312:129-142.
  • [110]Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, Chen Q, McLeish KR, Klein JB: Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 2003, 278:27828-27835.
  • [111]Qi S, Xin Y, Qi Z, Xu Y, Diao Y, Lan L, Luo L, Yin Z: HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with β-arrestin2. Cell Signal 2014, 26:594-602.
  • [112]Kim A, Ueda Y, Naka T, Enomoto T: Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res 2012, 31:14. BioMed Central Full Text
  • [113]Hsu H-S, Lin J-H, Huang W-C, Hsu T-W, Su K, Chiou S-H, Tsai Y-T, Hung S-C: Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 2011, 117:1516-1528.
  • [114]McConnell JR, McAlpine SR: Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorg Med Chem Lett 2013, 23:1923-1928.
  • [115]Prestwich GD: Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc Chem Res 2008, 41:139-148.
  • [116]Cukierman E, Pankov R, Stevens DR, Yamada KM: Taking cell-matrix adhesions to the third dimension. Science 2001, 294:1708-1712.
  • [117]Bokhari M, Carnachan RJ, Cameron NR, Przyborski SA: Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge. J Anat 2007, 211:567-576.
  • [118]Hall HG, Farson DA, Bissell MJ: Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci U S A 1982, 79:4672-4676.
  • [119]Do Amaral JB, Urabayashi MS, Machado-Santelli GM: Cell death and lumen formation in spheroids of MCF-7 cells. Cell Biol Int 2010, 34:267-274.
  • [120]Do Amaral JB, Rezende-Teixeira P, Freitas VM, Machado-Santelli GM: MCF-7 cells as a three-dimensional model for the study of human breast cancer. Tissue Eng Part C Methods 2011, 17:1097-1107.
  • [121]Page H, Flood P, Reynaud EG: Three-dimensional tissue cultures: current trends and beyond. Cell Tissue Res 2013, 352:123-131.
  • [122]Spencer VA, Xu R, Bissell MJ: Gene expression in the third dimension: the ECM-nucleus connection. J Mammary Gland Biol Neoplasia 2010, 15:65-71.
  • [123]Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schäfer K-L, Baldus SE, Huckenbeck W, Piekorz RP, Knoefel WT, Krieg A, Stoecklein NH: Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 2013, 8:e59689.
  • [124]Santini MT, Rainaldi G, Indovina PL: Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit Rev Oncol Hematol 2000, 36:75-87.
  • [125]Waleh NS, Gallo J, Grant TD, Murphy BJ, Kramer RH, Sutherland RM: Selective down-regulation of integrin receptors in spheroids of squamous cell carcinoma. Cancer Res 1994, 54:838-843.
  • [126]Hauptmann S, Denkert C, Löhrke H, Tietze L, Ott S, Klosterhalfen B, Mittermayer C: Integrin expression on colorectal tumor cells growing as monolayers, as multicellular tumor spheroids, or in nude mice. Int J Cancer 1995, 61:819-825.
  • [127]Friedrich J, Eder W, Castaneda J, Doss M, Huber E, Ebner R, Kunz-Schughart LA: A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen 2007, 12:925-937.
  • [128]Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA: Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010, 148:3-15.
  • [129]Fourré N, Millot J-M, Garnotel R, Jeannesson P: In situ analysis of doxorubicin uptake and cytotoxicity in a 3D culture model of human HT-1080 fibrosarcoma cells. Anticancer Res 2006, 26:4623-4626.
  • [130]Yip D, Cho CH: A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem Biophys Res Commun 2013, 433:327-332.
  • [131]Millerot-Serrurot E, Guilbert M, Fourré N, Witkowski W, Said G, Van Gulick L, Terryn C, Zahm J-M, Garnotel R, Jeannesson P: 3D collagen type I matrix inhibits the antimigratory effect of doxorubicin. Cancer Cell Int 2010, 10:26. BioMed Central Full Text
  • [132]Godugu C, Patel AR, Desai U, Andey T, Sams A, Singh M: AlgiMatrixTM based 3D cell culture system as an in-vitro tumor model for anticancer studies. PLoS One 2013, 8:e53708.
  • [133]Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS: Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999, 93:1658-1667.
  • [134]Sanz-Rodríguez F, Teixidó J: VLA-4-dependent myeloma cell adhesion. Leuk Lymphoma 2001, 41:239-245.
  • [135]Weaver VM, Lelièvre S, Lakins JN, Chrenek MA, Jones JCR, Giancotti F, Werb Z, Bissell MJ: Beta4 Integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002, 2:205-216.
  • [136]Schmidmaier R, Baumann P: ANTI-ADHESION evolves to a promising therapeutic concept in oncology. Curr Med Chem 2008, 15:978-990.
  • [137]Westhoff M-A, Fulda S: Adhesion-mediated apoptosis resistance in cancer. Drug Resist Updat 2009, 12:127-136.
  • [138]Longati P, Jia X, Eimer J, Wagman A, Witt M-R, Rehnmark S, Verbeke C, Toftgård R, Löhr M, Heuchel RL: 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 2013, 13:95. BioMed Central Full Text
  • [139]Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC: Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010, 31:8494-8506.
  • [140]Dong Y, Stephens C, Walpole C, Swedberg JE, Boyle GM, Parsons PG, McGuckin MA, Harris JM, Clements JA: Paclitaxel resistance and multicellular spheroid formation are induced by kallikrein-related peptidase 4 in serous ovarian cancer cells in an ascites mimicking microenvironment. PLoS One 2013, 8:e57056.
  • [141]Chen J, Wang J, Chen D, Yang J, Yang C, Zhang Y, Zhang H, Dou J: Evaluation of characteristics of CD44 + CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol 2013, 14:7. BioMed Central Full Text
  • [142]Yang T-M, Barbone D, Fennell DA, Broaddus VC: Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids. Am J Respir Cell Mol Biol 2009, 41:14-23.
  • [143]Lee SY, Jeong E, Jeon HM, Kim CH, Kang HS: Implication of necrosis-linked p53 aggregation in acquired apoptotic resistance to 5-FU in MCF-7 multicellular tumour spheroids. Oncol Rep 2010, 24:73-79.
  • [144]Nirmalanandhan VS, Duren A, Hendricks P, Vielhauer G, Sittampalam GS: Activity of anticancer agents in a three-dimensional cell culture model. Assay Drug Dev Technol 2010, 8:581-590.
  • [145]Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, Dong L, Andera L, Ralph SJ: Tumour-initiating cells vs. cancer “stem” cells and CD133: what’s in the name? Biochem Biophys Res Commun 2007, 355:855-859.
  • [146]Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer 2005, 5:275-284.
  • [147]Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008, 8:755-768.
  • [148]Takaishi S, Okumura T, Tu S, Wang SSW, Shibata W, Vigneshwaran R, Gordon SAK, Shimada Y, Wang TC: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009, 27:1006-1020.
  • [149]Tirino V, Camerlingo R, Franco R, Malanga D, La Rocca A, Viglietto G, Rocco G, Pirozzi G: The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur J Cardiothorac Surg 2009, 36:446-453.
  • [150]Awad O, Yustein JT, Shah P, Gul N, Katuri V, Neill AO, Kong Y, Brown ML, Toretsky JA, Loeb DM, O’Neill A: High ALDH activity identifies chemotherapy-resistant Ewing’s sarcoma stem cells that retain sensitivity to EWS-FLI1 inhibition. PLoS One 2010, 5:e13943.
  • [151]Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S, Miotti S, Tosello V, Zamarchi R, Corradin A, Minuzzo S, Rossi E, Basso G, Amadori A: The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res 2008, 68:5658-5668.
  • [152]Rybak AP, He L, Kapoor A, Cutz J-C, Tang D: Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells. Biochim Biophys Acta 1813, 2011:683-694.
  • [153]Pastrana E, Silva-Vargas V, Doetsch F: Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 2011, 8:486-498.
  • [154]Marhaba R, Zöller M: CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 2004, 35:211-231.
  • [155]Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007, 104:973-978.
  • [156]Marchitti SA, Brocker C, Stagos D, Vasiliou V: Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008, 4:697-720.
  • [157]Magni M, Shammah S, Schiró R, Mellado W, Dalla-Favera R, Gianni AM: Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood 1996, 87:1097-1103.
  • [158]Sládek NE, Kollander R, Sreerama L, Kiang DT: Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol 2002, 49:309-321.
  • [159]Cheung AMS, Wan TSK, Leung JCK, Chan LYY, Huang H, Kwong YL, Liang R, Leung AYH: Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 2007, 21:1423-1430.
  • [160]Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1:555-567.
  • [161]Marcato P, Dean CA, Giacomantonio CA, Lee PWK: Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 2011, 10:1378-1384.
  • [162]Ionta M, Rosa MCC, Almeida RBB, Freitas VMM, Rezende-Teixeira P, Machado-Santelli GMM: Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation. Braz J Med Biol Res 2012, 45:721-729.
  • [163]Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996, 183:1797-1806.
  • [164]Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, Laino L, De Francesco F, Papaccio G: Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 2013, 27:13-24.
  • [165]Lee H, Park S, Kim JB, Kim J, Kim H: Entrapped doxorubicin nanoparticles for the treatment of metastatic anoikis-resistant cancer cells. Cancer Lett 2013, 332:110-119.
  • [166]Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255:1707-1710.
  • [167]Alamgeer M, Peacock CD, Matsui W, Ganju V, Watkins DN: Cancer stem cells in lung cancer: evidence and controversies. Respirology 2013, 18:757-764.
  文献评价指标  
  下载次数:8次 浏览次数:193次