期刊论文详细信息
Cell & Bioscience
Epigenetic regulation in adult stem cells and cancers
Xin Chen1  Lama Tarayrah1 
[1] Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
关键词: Cancer stem cell;    Cancer;    Epigenetics;    Hair follicle stem cell;    Intestinal stem cell;    Germline stem cell;    Adult stem cell;   
Others  :  791479
DOI  :  10.1186/2045-3701-3-41
 received in 2013-07-19, accepted in 2013-09-05,  发布年份 2013
PDF
【 摘 要 】

Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells.

【 授权许可】

   
2013 Tarayrah and Chen; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705013826331.pdf 1262KB PDF download
Figure 3. 49KB Image download
Figure 2. 41KB Image download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128:693-705.
  • [2]Cedar H, Bergman Y: Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009, 10:295-304.
  • [3]Duesberg P, Fabarius A, Hehlmann R: Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells. IUBMB Life 2004, 56:65-81.
  • [4]Adjei AA: Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001, 93:1062-1074.
  • [5]Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100:57-70.
  • [6]Boveri T: Concerning the origin of malignant tumours by Theodor Boveri. translated and annotated by Henry Harris. J Cell Sci 2008, 121(Suppl 1):1-84.
  • [7]Chi P, Allis CD, Wang GG: Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010, 10:457-469.
  • [8]Blair LP, Cao J, Zou MR, Sayegh J, Yan Q: Epigenetic regulation by Lysine Demethylase 5 (KDM5) enzymes in cancer. Cancers (Basel) 2011, 3:1383-1404.
  • [9]Jones PA, Baylin SB: The epigenomics of cancer. Cell 2007, 128:683-692.
  • [10]Esteller M: Epigenetics in cancer. N Engl J Med 2008, 358:1148-1159.
  • [11]Rodriguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17:330-339.
  • [12]Alison MR, Lim SM, Nicholson LJ: Cancer stem cells: problems for therapy? J Pathol 2011, 223:147-161.
  • [13]Barker N, et al.: Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009, 457:608-611.
  • [14]Leedham SJ, Thliveris AT, Halberg RB, Newton MA, Wright NA: Gastrointestinal stem cells and cancer: bridging the molecular gap. Stem Cell Rev 2005, 1:233-241.
  • [15]Zhu L, et al.: Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 2009, 457:603-607.
  • [16]Wang JC, Dick JE: Cancer stem cells: lessons from leukemia. Trends Cell Biol 2005, 15:494-501.
  • [17]Shipitsin M, Polyak K: The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 2008, 88:459-463.
  • [18]Jordan CT, Guzman ML, Noble M: Cancer stem cells. N Engl J Med 2006, 355:1253-1261.
  • [19]Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730-737.
  • [20]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100:3983-3988.
  • [21]Singh SK, et al.: Identification of human brain tumour initiating cells. Nature 2004, 432:396-401.
  • [22]O’Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445:106-110.
  • [23]Prince ME, et al.: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007, 104:973-978.
  • [24]Eramo A, et al.: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008, 15:504-514.
  • [25]Li X, et al.: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008, 100:672-679.
  • [26]Cinalli RM, Rangan P, Lehmann R: Germ cells are forever. Cell 2008, 132:559-562.
  • [27]Eun SH, Gan Q, Chen X: Epigenetic regulation of germ cell differentiation. Curr Opin Cell Biol 2010, 22:737-743.
  • [28]Morrison SJ, Spradling AC: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008, 132:598-611.
  • [29]Buszczak M, Spradling AC: Searching chromatin for stem cell identity. Cell 2006, 125:233-236.
  • [30]Li X, Zhao X: Epigenetic regulation of mammalian stem cells. Stem Cells Dev 2008, 17:1043-1052.
  • [31]Sarmento OF, et al.: Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 2004, 117:4449-4459.
  • [32]Seligson DB, et al.: Global histone modification patterns predict risk of prostate cancer recurrence. Nature 2005, 435:1262-1266.
  • [33]Greer EL, et al.: Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 2010, 466:383-387.
  • [34]Li T, Kelly WG: A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet 2011, 7:e1001349.
  • [35]Lee KS, Yoon J, Park JS, Kang YK: Drosophila G9a is implicated in germ cell development. Insect Mol Biol 2010, 19:131-139.
  • [36]Wang X, et al.: Histone H3K9 trimethylase Eggless controls germline stem cell maintenance and differentiation. PLoS Genet 2011, 7:e1002426.
  • [37]Yang SY, Baxter EM, Van Doren M: Phf7 controls male sex determination in the Drosophila germline. Dev Cell 2012, 22:1041-1051.
  • [38]Gan Q, et al.: Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res 2010, 20:763-783.
  • [39]Eliazer S, Shalaby NA, Buszczak M: Loss of lysine-specific demethylase 1 nonautonomously causes stem cell tumors in the Drosophila ovary. Proc Natl Acad Sci USA 2011, 108:7064-7069.
  • [40]Tarayrah L, Herz HM, Shilatifard A, Chen X: Histone demethylase dUTX antagonizes JAK-STAT signaling to maintain proper gene expression and architecture of the Drosophila testis niche. Development 2013, 140:1014-1023.
  • [41]Xie T, Spradling AC: A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000, 290:328-330.
  • [42]Rangan P, et al.: piRNA production requires heterochromatin formation in Drosophila. Curr Biol 2011, 21:1373-1379.
  • [43]Klose RJ, Kallin EM, Zhang Y: JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 2006, 7:715-727.
  • [44]Inaba M, Yamashita YM: Asymmetric stem cell division: precision for robustness. Cell Stem Cell 2012, 11:461-469.
  • [45]Tran V, Lim C, Xie J, Chen X: Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 2012, 338:679-682.
  • [46]Tran V, Feng L, Chen X: Asymmetric distribution of histones during Drosophila male germline stem cell asymmetric divisions. Chromosome Res 2013, 21:255-269.
  • [47]Smith ER, et al.: Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II. Mol Cell Biol 2008, 28:1041-1046.
  • [48]Mansour AA, et al.: The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 2012, 488:409-413.
  • [49]van Haaften G, et al.: Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 2009, 41:521-523.
  • [50]Becker PB, Horz W: ATP-dependent nucleosome remodeling. Annu Rev Biochem 2002, 71:247-273.
  • [51]Bouazoune K, Brehm A: ATP-dependent chromatin remodeling complexes in Drosophila. Chromosome Res 2006, 14:433-449.
  • [52]Cherry CM, Matunis EL: Epigenetic regulation of stem cell maintenance in the Drosophila testis via the nucleosome-remodeling factor NURF. Cell Stem Cell 2010, 6:557-567.
  • [53]Xi R, Xie T: Stem cell self-renewal controlled by chromatin remodeling factors. Science 2005, 310:1487-1489.
  • [54]Oatley MJ, Racicot KE, Oatley JM: Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod 2011, 84:639-645.
  • [55]Payne CJ, et al.: Sin3a is required by sertoli cells to establish a niche for undifferentiated spermatogonia, germ cell tumors, and spermatid elongation. Stem Cells 2010, 28:1424-1434.
  • [56]Gallagher SJ, et al.: Distinct requirements for Sin3a in perinatal male gonocytes and differentiating spermatogonia. Dev Biol 2013, 373:83-94.
  • [57]Micchelli CA, Perrimon N: Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 2006, 439:475-479.
  • [58]Ohlstein B, Spradling A: The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 2006, 439:470-474.
  • [59]Ohlstein B, Spradling A: Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 2007, 315:988-992.
  • [60]Lin G, Xu N, Xi R: Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 2008, 455:1119-1123.
  • [61]Wang P, Hou SX: Regulation of intestinal stem cells in mammals and Drosophila. J Cell Physiol 2010, 222:33-37.
  • [62]Buszczak M, Paterno S, Spradling AC: Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science 2009, 323:248-251.
  • [63]Karpiuk O, et al.: The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells. Mol Cell 2012, 46:705-713.
  • [64]Ma Y, Chen Z, Jin Y, Liu W: Identification of a histone acetyltransferase as a novel regulator of Drosophila intestinal stem cells. FEBS Lett 2013, 587:1489-1495.
  • [65]Suganuma T, et al.: ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 2008, 15:364-372.
  • [66]Suganuma T, et al.: The ATAC acetyltransferase complex coordinates MAP kinases to regulate JNK target genes. Cell 2010, 142:726-736.
  • [67]Nan X, et al.: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393:386-389.
  • [68]Lyko F, Ramsahoye BH, Jaenisch R: DNA methylation in Drosophila melanogaster. Nature 2000, 408:538-540.
  • [69]Lee SH, et al.: Regulation of intestinal stem cell proliferation by human methyl-CpG-binding protein-2 in Drosophila. Cell Struct Funct 2011, 36:197-208.
  • [70]Morris RJ: Keratinocyte stem cells: targets for cutaneous carcinogens. J Clin Invest 2000, 106:3-8.
  • [71]Slominski A, Paus R: Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J Invest Dermatol 1993, 101:90S-97S.
  • [72]Rabbani P, et al.: Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 2011, 145:941-955.
  • [73]Nishimura EK, et al.: Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 2010, 6:130-140.
  • [74]Greco V, et al.: A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 2009, 4:155-169.
  • [75]Lien WH, et al.: Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 2011, 9:219-232.
  • [76]Ezhkova E, et al.: EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev 2011, 25:485-498.
  • [77]Pasini D, et al.: JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 2010, 464:306-310.
  • [78]Li G, et al.: Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 2010, 24:368-380.
  • [79]Mejetta S, et al.: Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO J 2011, 30:3635-3646.
  • [80]Morrison SJ, et al.: A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol 2002, 168:635-642.
  • [81]Malanchi I, et al.: Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012, 481:85-89.
  • [82]Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983, 301:89-92.
  • [83]Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP: Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 1985, 228:187-190.
  • [84]Gama-Sosa MA, et al.: The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 1983, 11:6883-6894.
  • [85]Nakamura N, Takenaga K: Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin Exp Metastasis 1998, 16:471-479.
  • [86]Nishigaki M, et al.: Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 2005, 65:2115-2124.
  • [87]Tahiliani M, et al.: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
  • [88]Ito S, et al.: Role of Tet proteins in 5mC to 5hmC conversion. ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
  • [89]Wu SC, Zhang Y: Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010, 11:607-620.
  • [90]Yang H, et al.: Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 2013, 32:663-669.
  • [91]Lian CG, et al.: Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012, 150:1135-1146.
  • [92]Huang H, et al.: TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA 2013, 110:11994-11999.
  • [93]Makishima H, et al.: CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood 2011, 117:e198-e206.
  • [94]Pui CH, et al.: Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003, 17:700-706.
  • [95]Mardis ER, et al.: Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009, 361:1058-1066.
  • [96]Ko M, et al.: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010, 468:839-843.
  • [97]Hsu CH, et al.: TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep 2012, 2:568-579.
  • [98]Sun M, et al.: HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc Natl Acad Sci USA 2013, 110:9920-9925.
  • [99]Gonzalez-Zulueta M, et al.: Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 1995, 55:4531-4535.
  • [100]Sakai T, et al.: Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 1991, 48:880-888.
  • [101]Avci CB, et al.: Promoter hypermethylation-mediated down-regulation of RUNX3 gene in human brain tumors. Ir J Med Sci 2013. [Epub ahead of print]
  • [102]Li ZG, et al.: Hypermethylation of two CpG sites upstream of CASP8AP2 promoter influences gene expression and treatment outcome in childhood acute lymphoblastic leukemia. Leuk Res 2013, 2126(13):S0145-S00245.
  • [103]Chedin F: The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci 2011, 101:255-285.
  • [104]Chen T, et al.: Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 2007, 39:391-396.
  • [105]Bestor TH, Ingram VM: Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci USA 1983, 80:5559-5563.
  • [106]Trowbridge JJ, et al.: Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 2012, 26:344-349.
  • [107]Varambally S, et al.: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002, 419:624-629.
  • [108]Kleer CG, et al.: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003, 100:11606-11611.
  • [109]Chang CJ, et al.: EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 2011, 19:86-100.
  • [110]Bao B, et al.: Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 2012, 72:335-345.
  • [111]Crea F, et al.: Pharmacologic disruption of polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 2011, 10:40. BioMed Central Full Text
  • [112]Rizzo S, et al.: Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther 2011, 10:325-335.
  • [113]Chatoo W, et al.: The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J Neurosci 2009, 29:529-542.
  • [114]Stupp R, et al.: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009, 10:459-466.
  • [115]Li Z, et al.: Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009, 15:501-513.
  • [116]Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN: The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 2009, 8:3274-3284.
  • [117]Seidel S, et al.: A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 2010, 133:983-995.
  • [118]Heddleston JM, et al.: Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ 2012, 19:428-439.
  • [119]Cheng L, et al.: OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol 2007, 211:1-9.
  • [120]Jones TD, Ulbright TM, Eble JN, Cheng L: OCT4: a sensitive and specific biomarker for intratubular germ cell neoplasia of the testis. Clin Cancer Res 2004, 10:8544-8547.
  • [121]Jones TD, Ulbright TM, Eble JN, Baldridge LA, Cheng L: OCT4 staining in testicular tumors: a sensitive and specific marker for seminoma and embryonal carcinoma. Am J Surg Pathol 2004, 28:935-940.
  • [122]Strickland S, Smith KK, Marotti KR: Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell 1980, 21:347-355.
  • [123]Wang J, et al.: Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 2011, 71:7238-7249.
  文献评价指标  
  下载次数:65次 浏览次数:12次