期刊论文详细信息
Clinical Epigenetics
Identification of subgroup-specific miRNA patterns by epigenetic profiling of sporadic and Lynch syndrome-associated colorectal and endometrial carcinoma
Päivi Peltomäki3  Maija RJ Kohonen-Corish2  Janindra Warusavitarne1  Sam Al-Sohaily1  Johanna E Lotsari3  Sippy Kaur3 
[1] The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Darlinghurst, Sydney 2010, NSW, Australia;School of Medicine, University of Western Sydney, Campelltown, Sydney 2560, NSW, Australia;Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki FIN-00014, Finland
关键词: Endometrial cancer;    Colorectal cancer;    Lynch syndrome;    Microsatellite instability;    Methylation;    miRNA;   
Others  :  1147829
DOI  :  10.1186/s13148-015-0059-3
 received in 2014-10-10, accepted in 2015-02-13,  发布年份 2015
PDF
【 摘 要 】

Background

Altered expression of microRNAs (miRNAs) commonly accompanies colorectal (CRC) and endometrial carcinoma (EC) development, but the underlying mechanisms and clinicopathological correlations remain to be clarified. We focused on epigenetic mechanisms and aimed to explore if DNA methylation patterns in tumors depend on DNA mismatch repair (MMR) status, sporadic vs. Lynch-associated disease, and geographic origin (Finland vs. Australia). Treatment of cancer cell lines with demethylating agents revealed 109 significantly upregulated miRNAs. Seven met our stringent criteria for possible methylation-sensitive miRNAs and were used to screen patient specimens (205 CRCs and 36 ECs) by methylation-specific multiplex ligation-dependent probe amplification.

Results

Three miRNAs (129-2, 345, and 132) with low methylation levels in normal tissue and frequent hypermethylation in tumors were of particular interest. Hypermethylation of miR-345 and miR-132 associated with MMR deficiency in CRC regardless of geographic origin, and hypermethylation of miR-132 distinguished sporadic MMR-deficient CRC from Lynch-CRC. Finally, hypermethylation of miRNAs stratified 49 endometrial hyperplasias into low-methylator (simple hyperplasia) and high-methylator groups (complex hyperplasia with or without atypia) and suggested that miR-129-2 methylation in particular could serve as a marker of progression in early endometrial tumorigenesis.

Conclusions

Our study identifies miR-345 and miR-132 as novel differentially methylated miRNAs in CRC, thereby facilitating sub-classification of CRC and links miR-129-2 methylation to early endometrial tumorigenesis.

【 授权许可】

   
2015 Kaur et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150404045029149.pdf 1060KB PDF download
Figure 4. 32KB Image download
Figure 3. 43KB Image download
Figure 2. 25KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011, 12:99-110.
  • [2]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-7.
  • [3]Chang TC, Mendell JT: microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 2007, 8:215-39.
  • [4]Saini HK, Enright AJ, Griffiths-Jones S: Annotation of mammalian primary microRNAs. BMC Genomics 2008, 9:564. BioMed Central Full Text
  • [5]Shenouda SK, Alahari SK: MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 2009, 28:369-78.
  • [6]Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, et al.: Chromatin structure analyses identify miRNA promoters. Genes Dev 2008, 22:3172-83.
  • [7]Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, Maruyama R, et al.: Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res 2011, 71:5646-58.
  • [8]Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, et al.: Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res 2012, 72:3775-85.
  • [9]Popovic R, Licht JD: Emerging epigenetic targets and therapies in cancer medicine. Canc Discov 2012, 2:405-13.
  • [10]Vilar E, Gruber SB: Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 2010, 7:153-62.
  • [11]Joensuu EI, Abdel-Rahman WM, Ollikainen M, Ruosaari S, Knuutila S, Peltomaki P: Epigenetic signatures of familial cancer are characteristic of tumor type and family category. Cancer Res 2008, 68:4597-605.
  • [12]Gylling AH, Nieminen TT, Abdel-Rahman WM, Nuorva K, Juhola M, Joensuu EI, et al.: Differential cancer predisposition in Lynch syndrome: insights from molecular analysis of brain and urinary tract tumors. Carcinogenesis 2008, 29:1351-9.
  • [13]Whitcomb BP, Mutch DG, Herzog TJ, Rader JS, Gibb RK, Goodfellow PJ: Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res 2003, 9:2277-87.
  • [14]Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknaes M, Hektoen M, et al.: Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013, 2:e71.
  • [15]Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, et al.: Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 2014, 74:3238-47.
  • [16]Pavicic W, Perkio E, Kaur S, Peltomaki P: Altered methylation at microRNA-associated CpG islands in hereditary and sporadic carcinomas: a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach. Mol Med 2011, 17:726-35.
  • [17]Kohonen-Corish MR, Sigglekow ND, Susanto J, Chapuis PH, Bokey EL, Dent OF, et al.: Promoter methylation of the mutated in colorectal cancer gene is a frequent early event in colorectal cancer. Oncogene 2007, 26:4435-41.
  • [18]Zhang S, Hao J, Xie F, Hu X, Liu C, Tong J, et al.: Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 2011, 32:1183-9.
  • [19]Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, et al.: DNA methylation silences miR-132 in prostate cancer. Oncogene 2013, 32:127-34.
  • [20]Zheng YB, Luo HP, Shi Q, Hao ZN, Ding Y, Wang QS, et al.: miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World J Gastroenterol 2014, 20:6515-22.
  • [21]Jover R, Nguyen TP, Perez-Carbonell L, Zapater P, Paya A, Alenda C, et al.: 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology 2011, 140:1174-81.
  • [22]Tang JT, Wang JL, Du W, Hong J, Zhao SL, Wang YC, et al.: MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis 2011, 32:1207-15.
  • [23]Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, et al.: Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 2009, 125:2737-43.
  • [24]Tsai KW, Wu CW, Hu LY, Li SC, Liao YL, Lai CH, et al.: Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer 2011, 129:2600-10.
  • [25]Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, et al.: Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 2009, 69:9038-46.
  • [26]Anwar SL, Albat C, Krech T, Hasemeier B, Schipper E, Schweitzer N, et al.: Concordant hypermethylation of intergenic microRNA genes in human hepatocellular carcinoma as new diagnostic and prognostic marker. Int J Cancer 2013, 133:660-70.
  • [27]Nieminen TT, Gylling A, Abdel-Rahman WM, Nuorva K, Aarnio M, Renkonen-Sinisalo L, et al.: Molecular analysis of endometrial tumorigenesis: importance of complex hyperplasia regardless of atypia. Clin Cancer Res 2009, 15:5772-83.
  • [28]Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al.: Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 2009, 5:e1000602.
  • [29]Fraser HB, Lam LL, Neumann SM, Kobor MS: Population-specificity of human DNA methylation. Genome Biol 2012, 13:R8. BioMed Central Full Text
  • [30]Nieminen TT, Shoman S, Eissa S, Peltomaki P, Abdel-Rahman WM: Distinct genetic and epigenetic signatures of colorectal cancers according to ethnic origin. Cancer Epidemiol Biomarkers Prev 2012, 21:202-11.
  • [31]McCabe MT, Brandes JC, Vertino PM: Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res 2009, 15:3927-37.
  • [32]Samowitz WS, Curtin K, Wolff RK, Albertsen H, Sweeney C, Caan BJ, et al.: The MLH1–93 G > A promoter polymorphism and genetic and epigenetic alterations in colon cancer. Genes Chromosomes Canc 2008, 47:835-44.
  • [33]Gal-Yam EN, Saito Y, Egger G, Jones PA: Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med 2008, 59:267-80.
  • [34]How Kit A, Nielsen HM, Tost J: DNA methylation based biomarkers: practical considerations and applications. Biochimie 2012, 94:2314-37.
  • [35]Tournier B, Chapusot C, Courcet E, Martin L, Lepage C, Faivre J, et al.: Why do results conflict regarding the prognostic value of the methylation status in colon cancers? The role of the preservation method. BMC Cancer 2012, 12:12. BioMed Central Full Text
  • [36]Nygren AO, Ameziane N, Duarte HM, Vijzelaar RN, Waisfisz Q, Hess CJ, et al.: Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res 2005, 33:e128.
  • [37]Homig-Holzel C, Savola S: Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol 2012, 21:189-206.
  • [38]Reed K, Poulin ML, Yan L, Parissenti AM: Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 2010, 397:96-106.
  • [39]Paliwal A, Vaissiere T, Herceg Z: Quantitative detection of DNA methylation states in minute amounts of DNA from body fluids. Methods 2010, 52:242-7.
  • [40]Leong KJ, Wei W, Tannahill LA, Caldwell GM, Jones CE, Morton DG, et al.: Methylation profiling of rectal cancer identifies novel markers of early-stage disease. Br J Surg 2011, 98:724-34.
  • [41]Niskakoski A, Kaur S, Staff S, Renkonen-Sinisalo L, Lassus H, Järvinen HJ, et al.: Epigenetic analysis of sporadic and Lynch-associated ovarian cancers reveals histology-specific patterns of DNA methylation. Epigenetics 2014, 9:1577-87.
  • [42]Gao W, Kondo Y, Shen L, Shimizu Y, Sano T, Yamao K, et al.: Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas. Carcinogenesis 2008, 29:1901-10.
  • [43]Wu J, Qian J, Li C, Kwok L, Cheng F, Liu P, et al.: miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle 2010, 9:1809-18.
  • [44]Liao R, Sun J, Zhang L, Lou G, Chen M, Zhou D, et al.: MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 2008, 104:805-17.
  • [45]Bartley AN, Yao H, Barkoh BA, Ivan C, Mishra BM, Rashid A, et al.: Complex patterns of altered MicroRNA expression during the adenoma-adenocarcinoma sequence for microsatellite-stable colorectal cancer. Clin Cancer Res 2011, 17:7283-93.
  • [46]Oberg AL, French AJ, Sarver AL, Subramanian S, Morlan BW, Riska SM, et al.: miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS One 2011, 6:e20465.
  • [47]Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Wei Z, et al.: MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol 2008, 110:206-15.
  • [48]Lee H, Choi HJ, Kang CS, Lee HJ, Lee WS, Park CS: Expression of miRNAs and PTEN in endometrial specimens ranging from histologically normal to hyperplasia and endometrial adenocarcinoma. Mod Pathol 2012, 25:1508-15.
  • [49]Horn LC, Meinel A, Handzel R, Einenkel J: Histopathology of endometrial hyperplasia and endometrial carcinoma: an update. Ann Diagn Pathol 2007, 11:297-311.
  • [50]Ahnen DJ: The American College of Gastroenterology Emily Couric Lecture–the adenoma-carcinoma sequence revisited: has the era of genetic tailoring finally arrived? Am J Gastroenterol 2011, 106:190-8.
  • [51]Balaguer F, Moreira L, Lozano JJ, Link A, Ramirez G, Shen Y, et al.: Colorectal cancers with microsatellite instability display unique miRNA profiles. Clin Cancer Res 2011, 17:6239-49.
  • [52]Earle JS, Luthra R, Romans A, Abraham R, Ensor J, Yao H, et al.: Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 2010, 12:433-40.
  • [53]Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, et al.: Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 2009, 9:401. BioMed Central Full Text
  • [54]Kuismanen SA, Holmberg MT, Salovaara R, de la Chapelle A, Peltomaki P: Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. Am J Pathol 2000, 156:1773-9.
  • [55]Al-Sohaily S, Henderson C, Selinger C, Pangon L, Segelov E, Kohonen-Corish M, et al.: Loss of special AT-rich sequence-binding protein 1 (SATB1) predicts poor survival in patients with colorectal cancer. Histopathology 2014, 65:155-163.
  • [56]Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al.: A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998, 58:5248-57.
  • [57]Loukola A, Eklin K, Laiho P, Salovaara R, Kristo P, Jarvinen H, et al.: Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res 2001, 61:4545-9.
  • [58]Esemuede I, Forslund A, Khan SA, Qin LX, Gimbel MI, Nash GM, et al.: Improved testing for microsatellite instability in colorectal cancer using a simplified 3-marker assay. Ann Surg Oncol 2010, 17:3370-8.
  • [59]Kohonen-Corish MR, Tseung J, Chan C, Currey N, Dent OF, Clarke S, et al.: KRAS mutations and CDKN2A promoter methylation show an interactive adverse effect on survival and predict recurrence of rectal cancer. Int J Cancer 2014, 134:2820-8.
  • [60]Isola J, DeVries S, Chu L, Ghazvini S, Waldman F: Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. Am J Pathol 1994, 145:1301-8.
  • [61]Derks S, Bosch LJ, Niessen HE, Moerkerk PT, van den Bosch SM, Carvalho B, et al.: Promoter CpG island hypermethylation- and H3K9me3 and H3K27me3-mediated epigenetic silencing targets the deleted in colon cancer (DCC) gene in colorectal carcinogenesis without affecting neighboring genes on chromosomal region 18q21. Carcinogenesis 2009, 30:1041-8.
  • [62]Saini HK, Griffiths-Jones S, Enright AJ: Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A 2007, 104:17719-24.
  • [63]Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al.: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006, 38:787-93.
  文献评价指标  
  下载次数:1次 浏览次数:42次