期刊论文详细信息
Clinical Epigenetics
Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer
Daniela Furlan5  Fausto Sessa5  Carlo Capella5  Stefano Signoroni1  Lucio Bertario1  Luca Reggiani-Bonetti2  Giulia Magnani3  Maurizio Ponz de Leon3  Monica Pedroni3  Chiara Romualdi4  Maria Grazia Tibiletti6  Barbara Bernasconi5  Francesca Magnoli5  Nora Sahnane5 
[1] Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS—Istituto Nazionale dei Tumori Milan, Modena, Italy;Department of Pathology, Policlinico di Modena, Modena, Italy;Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy;CRIBI Biotechnology Center, University of Padova, Padua, Italy;Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, Varese, 21100, Italy;Department of Pathology, Ospedale di Circolo, Varese, Italy
关键词: Early onset colorectal cancer;    Microsatellite instability;    Lynch syndrome;    Gene hypermethylation;    LINE-1;    Colorectal cancer;   
Others  :  1234999
DOI  :  10.1186/s13148-015-0165-2
 received in 2015-09-25, accepted in 2015-12-16,  发布年份 2015
【 摘 要 】

Background

Aberrant DNA methylation has been widely investigated in sporadic colorectal carcinomas (CRCs), and extensive work has been performed to characterize different methylation profiles of CRC. Less information is available about the role of epigenetics in hereditary CRC and about the possible clinical use of epigenetic biomarkers in CRC, regardless of the etiopathogenesis. Long interspersed nucleotide element 1 (LINE-1) hypomethylation and gene-specific hypermethylation of 38 promoters were analyzed in multicenter series of 220 CRCs including 71 Lynch (Lynch colorectal cancer with microsatellite instability (LS-MSI)), 23 CRCs of patients under 40 years in which the main inherited CRC syndromes had been excluded (early-onset colorectal cancer with microsatellite stability (EO-MSS)), and 126 sporadic CRCs, comprising 28 cases with microsatellite instability (S-MSI) and 98 that were microsatellite stable (S-MSS). All tumor methylation patterns were integrated with clinico-pathological and genetic characteristics, namely chromosomal instability (CIN), TP53 loss, BRAF, and KRAS mutations.

Results

LS-MSI mainly showed absence of extensive DNA hypo- and hypermethylation. LINE-1 hypomethylation was observed in a subset of LS-MSI that were associated with the worse prognosis. Genetically, they commonly displayed G:A transition in the KRAS gene and absence of a CIN phenotype and of TP53 loss. S-MSI exhibited a specific epigenetic profile showing low rates of LINE-1 hypomethylation and extensive gene hypermethylation. S-MSI were mainly characterized by MLH1 methylation, BRAF mutation, and absence of a CIN phenotype and of TP53 loss. By contrast, S-MSS showed a high frequency of LINE-1 hypomethylation and of CIN, and they were associated with a worse prognosis. EO-MSS were a genetically and epigenetically heterogeneous group of CRCs. Like LS-MSI, some EO-MSS displayed low rates of DNA hypo- or hypermethylation and frequent G:A transitions in the KRAS gene, suggesting that a genetic syndrome might still be unrevealed in these patients. By contrast, some EO-MSS showed similar features to those observed in S-MSS, such as LINE-1 hypomethylation, CIN, and TP53 deletion. In all four classes, hypermethylation of ESR1, GATA5, and WT1 was very common.

Conclusions

Aberrant DNA methylation analysis allows the identification of different subsets of CRCs. This study confirms the potential utility of methylation tests for early detection of CRC and suggests that LINE-1 hypomethylation may be a useful prognostic marker in both sporadic and inherited CRCs.

【 授权许可】

   
2015 Sahnane et al.

附件列表
Files Size Format View
Fig. 5. 58KB Image download
Fig. 4. 59KB Image download
Fig. 3. 22KB Image download
Fig. 2. 22KB Image download
Fig. 1. 34KB Image download
Fig. 5. 58KB Image download
Fig. 4. 59KB Image download
Fig. 3. 22KB Image download
Fig. 2. 22KB Image download
Fig. 1. 34KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Beggs AD, Jones A, El-Bahrawy M, Abulafi M, Hodgson SV, Tomlinson IP: Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol 2013, 229:697-704.
  • [2]Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, et al.: Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2012, 22:271-82.
  • [3]Nejman D, Straussman R, Steinfeld I, Ruvolo M, Roberts D, Yakhini Z, et al.: Molecular rules governing de novo methylation in cancer. Cancer Res 2014, 74:1475-83.
  • [4]Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T, et al.: Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res 2009, 16:21-33.
  • [5]Baylin SB, Jones PA: A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 2011, 11:726-34.
  • [6]Lange CP, Campan M, Hinoue T, Schmitz RF, van der Meulen-de Jong AE, Slingerland H, et al.: Genome-scale discovery of DNA-methylation biomarkers for blood-based detection of colorectal cancer. PLoS One 2012, 7:e50266.
  • [7]Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, et al.: DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 2008, 54:414-23.
  • [8]Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, et al.: Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med 2011, 9:133. BioMed Central Full Text
  • [9]Belshaw NJ, Pal N, Tapp HS, Dainty JR, Lewis MP, Williams MR, et al.: Patterns of DNA methylation in individual colonic crypts reveal aging and cancer-related field defects in the morphologically normal mucosa. Carcinogenesis 2010, 31:1158-63.
  • [10]Chan AO, Broaddus RR, Houlihan PS, Issa JP, Hamilton SR, Rashid A: CpG island methylation in aberrant crypt foci of the colorectum. Am J Pathol 2002, 160:1823-30.
  • [11]Jass JR: Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathol 2007, 50:113-30.
  • [12]Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999, 96:8681-6.
  • [13]Network CGA: Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487:330-7.
  • [14]Fang M, Ou J, Hutchinson L, Green MR: The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG island methylator phenotype. Mol Cell 2014, 55:904-15.
  • [15]Nazemalhosseini Mojarad E, Kuppen PJ, Aghdaei HA, Zali MR: The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench 2013, 6:120-8.
  • [16]Sproul D, Meehan RR: Genomic insights into cancer-associated aberrant CpG island hypermethylation. Brief Funct Genomics 2013, 12:174-90.
  • [17]Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, et al.: Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 2004, 23:8841-6.
  • [18]Feinberg AP, Vogelstein B: Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 1983, 111:47-54.
  • [19]Suter CM, Martin DI, Ward RL: Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 2004, 19:95-101.
  • [20]Gasior SL, Wakeman TP, Xu B, Deininger PL: The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 2006, 357:1383-93.
  • [21]Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al.: Induction of tumors in mice by genomic hypomethylation. Science 2003, 300:489-92.
  • [22]Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF, Morales C, et al.: Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 2006, 66:8462-9468.
  • [23]Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H, et al.: Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci U S A 2005, 102:13580-5.
  • [24]Hur K, Cejas P, Feliu J, Moreno-Rubio J, Burgos E, Boland CR, et al.: Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 2014, 63:635-46.
  • [25]Baba Y, Murata A, Watanabe M, Baba H: Clinical implications of the LINE-1 methylation levels in patients with gastrointestinal cancer. Surg Today 2014, 44:1807-16.
  • [26]Miousse IR, Chalbot MC, Aykin-Burns N, Wang X, Basnakian A, Kavouras IG, et al.: Epigenetic alterations induced by ambient particulate matter in mouse macrophages. Environ Mol Mutagen 2014, 55:428-35.
  • [27]Murata A, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, et al.: Methylation levels of LINE-1 in primary lesion and matched metastatic lesions of colorectal cancer. Br J Cancer 2013, 109:408-15.
  • [28]Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A, et al.: Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer 2010, 9:125. BioMed Central Full Text
  • [29]Goel A, Xicola RM, Nguyen TP, Doyle BJ, Sohn VR, Bandipalliam P, et al.: Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterol 2010, 138:1854-62.
  • [30]Antelo M, Balaguer F, Shia J, Shen Y, Hur K, Moreira L, et al.: A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS One 2012, 7:e45357.
  • [31]Inamura K, Yamauchi M, Nishihara R, Lochhead P, Qian ZR, Kuchiba A, et al.: Tumor LINE-1 methylation level and microsatellite instability in relation to colorectal cancer prognosis. J Natl Cancer Inst 2014, 106:9.
  • [32]Kirzin S, Marisa L, Guimbaud R, De Reynies A, Legrain M, Laurent-Puig P, et al.: Sporadic early-onset colorectal cancer is a specific sub-type of cancer: a morphological, molecular and genetics study. PLoS One 2014, 9:e103159.
  • [33]Magnani G, Furlan D, Sahnane, N., Reggiani Bonetti L, Domati F, and Pedroni M. Molecular features and methylation status in early onset (=40 year) colorectal cancer: a population based, case–control study. Gastroenterology Research and Practice 2015;in press.
  • [34]Bardhan K, Liu K: Epigenetics and colorectal cancer pathogenesis. Cancers (Basel) 2013, 5:676-713.
  • [35]Colussi D, Brandi G, Bazzoli F, Ricciardiello L: Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci 2013, 14:16365-85.
  • [36]Sunami E, de Maat M, Vu A, Turner RR, Hoon DS: LINE-1 hypomethylation during primary colon cancer progression. PLoS One 2011, 6:e18884.
  • [37]Matsunoki A, Kawakami K, Kotake M, Kaneko M, Kitamura H, Ooi A, et al.: LINE-1 methylation shows little intra-patient heterogeneity in primary and synchronous metastatic colorectal cancer. BMC Cancer 2012, 12:574. BioMed Central Full Text
  • [38]Estecio MR, Gharibyan V, Shen L, Ibrahim AE, Doshi K, He R, et al.: LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One 2007, 2:e399.
  • [39]Hubbard JM, Grothey A: Adolescent and young adult colorectal cancer. J Natl Compr Canc Netw 2013, 11:1219-25.
  • [40]Mork ME, You YN, Ying J, Bannon SA, Lynch PM, Rodriguez-Bigas MA, et al.: High prevalence of hereditary cancer syndromes in adolescents and young adults with colorectal cancer. J Clin Oncol 2015, 33(31):3544-9.
  • [41]Rodriguez-Bigas MA, Mahoney MC, Weber TK, Petrelli NJ: Colorectal cancer in patients aged 30 years or younger. Surg Oncol 1996, 5:189-94.
  • [42]Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS: CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn 2006, 8:582-8.
  • [43]Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Burkle A, Caiafa P: Reconfiguration of DNA methylation in aging. Mech Ageing Dev 2015, 151:60-70.
  • [44]Hiltunen MO, Koistinaho J, Alhonen L, Myohanen S, Marin S, Kosma VM, et al.: Hypermethylation of the WT1 and calcitonin gene promoter regions at chromosome 11p in human colorectal cancer. Br J Cancer 1997, 76:1124-30.
  • [45]Jia Y, Guo M: Epigenetic changes in colorectal cancer. Chin J Cancer 2013, 32:21-30.
  • [46]Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE: Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 1994, 54:2552-5.
  • [47]Xu XL, Yu J, Zhang HY, Sun MH, Gu J, Du X, et al.: Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol 2004, 10:3441-54.
  • [48]Valo S, Kaur S, Ristimaki A, Renkonen-Sinisalo L, Jarvinen H, Mecklin JP, et al.: DNA hypermethylation appears early and shows increased frequency with dysplasia in Lynch syndrome-associated colorectal adenomas and carcinomas. Clin Epigenetics 2015, 7:71. BioMed Central Full Text
  • [49]Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et. al., Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2015. doi:. 10.1136/gutjnl-2015-310101 webcite
  • [50]Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, et al.: Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014, 74:1311-8.
  • [51]Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, et al.: Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 2013, 26:465-84.
  • [52]Parsons MT, Buchanan DD, Thompson B, Young JP, Spurdle AB: Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J Med Genet 2012, 49:151-7.
  • [53]Roberts SA, Gordenin DA: Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 2014, 14:786-800.
  • [54]Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al.: Patterns of somatic mutation in human cancer genomes. Nature 2007, 446:153-8.
  • [55]Hodgkinson A, Eyre-Walker A: Variation in the mutation rate across mammalian genomes. Nat Rev Genet 2011, 12:756-66.
  • [56]Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW: Cancer genome landscapes. Science 2013, 339:1546-58.
  • [57]Hamilton SR, Vogelstein B, Kudo S, Riboli E, Nakamura S, Hainaut P, et al. Tumours of the Colon and Rectum. In: Hamilton SR, Aaltonen LA, editors. WHO Classification Pathology & Genetics, Tumours of the Digestive System. Lyon: IARC Press; 2000. p. 103–44.
  • [58]Edge SB BD, Compton CC, Fritz AG, Greene FL, Trotti A: Colon and rectum. In TNM classification of malignant tumors. Edited by Edge SB. Springer, New York; 2010:173-206.
  • [59]Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP: A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004, 32:e38.
  • [60]Stefanoli M, La Rosa S, Sahnane N, Romualdi C, Pastorino R, Marando A, et al.: Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinol 2014, 100:26-34.
  • [61]Furlan D, Sahnane N, Mazzoni M, Pastorino R, Carnevali I, Stefanoli M, et al.: Diagnostic utility of MS-MLPA in DNA methylation profiling of adenocarcinomas and neuroendocrine carcinomas of the colon-rectum. Virchows Arch 2013, 462:47-56.
  • [62]Sahnane N, Furlan D, Monti M, Romualdi C, Vanoli A, Vicari E, et al.: Microsatellite unstable gastrointestinal neuroendocrine carcinomas: a new clinicopathologic entity. Endocr Relat Cancer 2014, 22:35-45.
  • [63]Furlan D, Sahnane N, Bernasconi B, Frattini M, Tibiletti MG, Molinari F, et al.: APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation. Virchows Arch 2014, 464:553-64.
  • [64]Schwarz G: Estimating the dimension of a model. Ann Stat 1978, 6:461-4.
  • [65]Raftery CFaAE: Model-based clustering, discriminant analysis, and density estimation J Am Stat Assoc 2002, 97:611-31.
  文献评价指标  
  下载次数:3次 浏览次数:6次