Cardiovascular Diabetology | |
Inhibition of DPP-4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats | |
Tetsuji Miura1  Keitaro Nishizawa1  Makoto Ogasawara1  Toshiyuki Tobisawa1  Satoko Ishikawa1  Hidemichi Kouzu1  Toshiyuki Yano1  Masaya Tanno1  Takayuki Miki1  Atsushi Kuno2  Hiromichi Murase1  | |
[1] Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan;Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan | |
关键词: Mortality; Myocardial infarction; DPP-4 inhibitor; Autophagy; Type 2 diabetes; | |
Others : 1222735 DOI : 10.1186/s12933-015-0264-6 |
|
received in 2015-04-27, accepted in 2015-07-24, 发布年份 2015 | |
【 摘 要 】
Background
Type 2 diabetes mellitus (T2DM) worsens the outcome after myocardial infarction (MI). Here, we hypothesized that inhibition of dipeptidyl peptidase-4 (DPP-4) improves survival after MI in T2DM by modifying autophagy in the non-infarcted region of the heart.
Methods and results
Under baseline conditions, there was no significant difference between levels of myocardial autophagy marker proteinsin OLETF, a rat model of T2DM, and in LETO, a non-diabetic control. However, in contrast to the response in LETO, LC3-II protein and LC3-positive autophagosomes in the non-infarcted region of the myocardium were not increased after MI in OLETF. The altered autophagic response in OLETF was associated with lack of AMPK/ULK-1 activation, attenuated response of Akt/mTOR/S6 signaling and increased Beclin-1–Bcl-2 interaction after MI. Treatment with vildagliptin (10 mg/kg/day s.c.), a DPP-4 inhibitor, suppressed Beclin-1–Bcl-2 interaction and increased both LC3-II protein level and autophagosomes in the non-infarcted region in OLETF, though it did not normalize AMPK/ULK-1 or mTOR/S6 signaling. Plasma insulin level, but not glucose level, was significantly reduced by vildagliptin at the dose used in this study. Survival rate at 48 h after MI was significantly lower in OLETF than in LETO (32 vs. 82%), despite similar infarct sizes. Vildagliptin improved the survival rate in OLETF to 80%, the benefit of which was abrogated by chloroquine, an autophagy inhibitor.
Conclusions
The results indicate that vildagliptin reduces T2DM-induced increase in post-MI acute mortality possibly by restoring the autophagic response through attenuation of Bcl-2-Beclin-1 interaction.
【 授权许可】
2015 Murase et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150826030809857.pdf | 3253KB | download | |
Fig.8. | 46KB | Image | download |
Fig.7. | 93KB | Image | download |
Fig.6. | 90KB | Image | download |
Fig.5. | 90KB | Image | download |
Fig.4. | 56KB | Image | download |
Fig.3. | 67KB | Image | download |
Fig.2. | 30KB | Image | download |
Fig.1. | 33KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.7.
Fig.8.
【 参考文献 】
- [1]Marso SP, Miller T, Rutherford BD, Gibbons RJ, Qureshi M, Kalynych A et al.. Comparison of myocardial reperfusion in patients undergoing percutaneous coronary intervention in ST-segment elevation acute myocardial infarction with versus without diabetes mellitus (from the EMERALD Trial). Am J Cardiol. 2007; 100:206-210.
- [2]De Luca G, Dirksen MT, Spaulding C, Kelbæk H, Schalij M, Thuesen L et al.. Impact of diabetes on long-term outcome after primary angioplasty: insights from the DESERT cooperation. Diabetes Care. 2013; 36:1020-1025.
- [3]Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol. 2012; 11:67. BioMed Central Full Text
- [4]Takada A, Miki T, Kuno A, Kouzu H, Sunaga D, Itoh T et al.. Role of ER stress in ventricular contractile dysfunction in type 2 diabetes. PLoS One. 2012; 7:e39893.
- [5]Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T et al.. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007; 100:914-922.
- [6]Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M et al.. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007; 13:619-624.
- [7]Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ Res. 2011; 109:502-511.
- [8]Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A et al.. The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res. 2011; 91:330-339.
- [9]Kanamori H, Takemura G, Goto K, Tsujimoto A, Ogino A, Takeyama T et al.. Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway. Am J Pathol. 2013; 182:701-713.
- [10]Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK et al.. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem. 2013; 288:915-926.
- [11]Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A et al.. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 2013; 19:1478-1488.
- [12]Watanabe T, Takemura G, Kanamori H, Goto K, Tsujimoto A, Okada H et al.. Restriction of food intake prevents postinfarction heart failure by enhancing autophagy in the surviving cardiomyocytes. Am J Pathol. 2014; 184:1384-1394.
- [13]Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial autophagic energy stress responses—macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol. 2015; 308:H1194-H1204.
- [14]Yamahara K, Yasuda M, Kume S, Koya D, Maegawa H, Uzu T. The role of autophagy in the pathogenesis of diabetic nephropathy. J Diabetes Res. 2013; 2013:193757.
- [15]He C, Zhu H, Li H, Zou MH, Xie Z. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes. 2013; 62:1270-1281.
- [16]Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M et al.. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation. 2012; 125:1134-1146.
- [17]Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT et al.. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med. 2014; 18:1599-1611.
- [18]Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B et al.. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 2011; 60:1770-1778.
- [19]Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y et al.. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem. 2013; 288:18077-18092.
- [20]Eguchi M, Kim YH, Kang KW, Shim CY, Jang Y, Dorval T et al.. Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice. PLoS One. 2012; 7:e30450.
- [21]Hou X, Hu Z, Xu H, Xu J, Zhang S, Zhong Y et al.. Advanced glycation endproducts trigger autophagy in cadiomyocyte via RAGE/PI3K/AKT/mTOR pathway. Cardiovasc Diabetol. 2014; 13:78. BioMed Central Full Text
- [22]Noyan-Ashraf MH, Shikatani EA, Schuiki I, Mukovozov I, Wu J, Li RK et al.. A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation. 2013; 127:74-85.
- [23]Huisamen B, Genade S, Lochner A. Signalling pathways activated by glucagon-like peptide-1 (7-36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc J Afr. 2008; 19:77-83.
- [24]Zeng Y, Li C, Guan M, Zheng Z, Li J, Xu W et al.. The DPP-4 inhibitor sitagliptin attenuates the progress of atherosclerosis in apolipoprotein-E-knockout mice via AMPK- and MAPK-dependent mechanisms. Cardiovasc Diabetol. 2014; 13:32. BioMed Central Full Text
- [25]Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011; 13:132-141.
- [26]Jing Yin J, Bo Li Y, Ming Cao M, Wang Y. Liraglutide improves the survival of INS-1 cells by promoting macroautophagy. Int J Endocrinol Metab. 2013; 11:184-190.
- [27]Shigeta T, Aoyama M, Bando YK, Monji A, Mitsui T, Takatsu M et al.. Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions. Circulation. 2012; 126:1838-1851.
- [28]Ravassa S, Barba J, Coma-Canella I, Huerta A, López B, González A et al.. The activity of circulating dipeptidyl peptidase-4 is associated with subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2013; 12:143. BioMed Central Full Text
- [29]Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM et al.. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009; 58:975-983.
- [30]Sauvé M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M et al.. Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes. 2010; 59:1063-1073.
- [31]Ussher JR, Baggio LL, Campbell JE, Mulvihill EE, Kim M, Kabir MG et al.. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Mol Metab. 2014; 3:507-517.
- [32]Hausenloy DJ, Whittington HJ, Wynne AM, Begum SS, Theodorou L, Riksen N et al.. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol. 2013; 12:154. BioMed Central Full Text
- [33]Kouzu H, Miki T, Tanno M, Kuno A, Yano T, Itoh T et al.. Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart. J Mol Cell Cardiol. 2015; 80:136-145.
- [34]Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T et al.. Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes. 2009; 58:2863-2872.
- [35]Shinmura K, Tamaki K, Sano M, Murata M, Yamakawa H, Ishida H et al.. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol. 2011; 50:117-127.
- [36]Jungraithmayr W, De Meester I, Matheeussen V, Baerts L, Arni S, Weder W. CD26/DPP-4 inhibition recruits regenerative stem cells via stromal cell-derived factor-1 and beneficially influences ischaemia/reperfusion injury in mouse lung transplantation. Eur J Cardiothorac Surg. 2012; 41:1166-1173.
- [37]Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ et al.. Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res. 2010; 106:129-132.
- [38]Zheng Q, Su H, Ranek MJ, Wang X. Autophagy and p62 in cardiac proteinopathy. Circ Res. 2011; 109:296-308.
- [39]Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al.. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005; 122:927-939.
- [40]Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S et al.. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013; 19:567-575.
- [41]Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014; 114:1788-1803.
- [42]French CJ, Zaman AT, McElroy-Yaggy KL, Neimane DK, Sobel BE. Absence of altered autophagy after myocardial ischemia in diabetic compared with nondiabetic mice. Coron Artery Dis. 2011; 22:479-483.
- [43]French BA, Kramer CM. Mechanisms of post-infarct left ventricular remodeling. Drug Discov Today Dis Mech. 2007; 4:185-196.
- [44]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990; 81:1161-1172.
- [45]Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J. 2012; 441:523-540.
- [46]Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K et al.. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res. 2000; 86:152-157.
- [47]Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA et al.. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007; 117:1782-1793.
- [48]Lee JE, Yi CO, Jeon BT, Shin HJ, Kim SK, Jung TS et al.. & #x03B1;-Lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima fatty rats. Cardiovasc Diabetol. 2012; 11:111. BioMed Central Full Text
- [49]Burkey BF, Li X, Bolognese L, Balkan B, Mone M, Russell M et al.. Acute and chronic effects of the incretin enhancer vildagliptin in insulin-resistant rats. J Pharmacol Exp Ther. 2005; 315:688-695.
- [50]Dobrian AD, Ma Q, Lindsay JW, Leone KA, Ma K, Coben J et al.. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am J Physiol Endocrinol Metab. 2011; 300:E410-E421.
- [51]Apaijai N, Pintana H, Chattipakorn SC, Chattipakorn N. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats. Br J Pharmacol. 2013; 169:1048-1057.
- [52]White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL et al.. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013; 369:1327-1335.
- [53]Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B et al.. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013; 369:1317-1326.