期刊论文详细信息
Cardiovascular Diabetology
Inhibition of DPP-4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats
Tetsuji Miura1  Keitaro Nishizawa1  Makoto Ogasawara1  Toshiyuki Tobisawa1  Satoko Ishikawa1  Hidemichi Kouzu1  Toshiyuki Yano1  Masaya Tanno1  Takayuki Miki1  Atsushi Kuno2  Hiromichi Murase1 
[1] Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan;Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
关键词: Mortality;    Myocardial infarction;    DPP-4 inhibitor;    Autophagy;    Type 2 diabetes;   
Others  :  1222735
DOI  :  10.1186/s12933-015-0264-6
 received in 2015-04-27, accepted in 2015-07-24,  发布年份 2015
PDF
【 摘 要 】

Background

Type 2 diabetes mellitus (T2DM) worsens the outcome after myocardial infarction (MI). Here, we hypothesized that inhibition of dipeptidyl peptidase-4 (DPP-4) improves survival after MI in T2DM by modifying autophagy in the non-infarcted region of the heart.

Methods and results

Under baseline conditions, there was no significant difference between levels of myocardial autophagy marker proteinsin OLETF, a rat model of T2DM, and in LETO, a non-diabetic control. However, in contrast to the response in LETO, LC3-II protein and LC3-positive autophagosomes in the non-infarcted region of the myocardium were not increased after MI in OLETF. The altered autophagic response in OLETF was associated with lack of AMPK/ULK-1 activation, attenuated response of Akt/mTOR/S6 signaling and increased Beclin-1–Bcl-2 interaction after MI. Treatment with vildagliptin (10 mg/kg/day s.c.), a DPP-4 inhibitor, suppressed Beclin-1–Bcl-2 interaction and increased both LC3-II protein level and autophagosomes in the non-infarcted region in OLETF, though it did not normalize AMPK/ULK-1 or mTOR/S6 signaling. Plasma insulin level, but not glucose level, was significantly reduced by vildagliptin at the dose used in this study. Survival rate at 48 h after MI was significantly lower in OLETF than in LETO (32 vs. 82%), despite similar infarct sizes. Vildagliptin improved the survival rate in OLETF to 80%, the benefit of which was abrogated by chloroquine, an autophagy inhibitor.

Conclusions

The results indicate that vildagliptin reduces T2DM-induced increase in post-MI acute mortality possibly by restoring the autophagic response through attenuation of Bcl-2-Beclin-1 interaction.

【 授权许可】

   
2015 Murase et al.

【 预 览 】
附件列表
Files Size Format View
20150826030809857.pdf 3253KB PDF download
Fig.8. 46KB Image download
Fig.7. 93KB Image download
Fig.6. 90KB Image download
Fig.5. 90KB Image download
Fig.4. 56KB Image download
Fig.3. 67KB Image download
Fig.2. 30KB Image download
Fig.1. 33KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

【 参考文献 】
  • [1]Marso SP, Miller T, Rutherford BD, Gibbons RJ, Qureshi M, Kalynych A et al.. Comparison of myocardial reperfusion in patients undergoing percutaneous coronary intervention in ST-segment elevation acute myocardial infarction with versus without diabetes mellitus (from the EMERALD Trial). Am J Cardiol. 2007; 100:206-210.
  • [2]De Luca G, Dirksen MT, Spaulding C, Kelbæk H, Schalij M, Thuesen L et al.. Impact of diabetes on long-term outcome after primary angioplasty: insights from the DESERT cooperation. Diabetes Care. 2013; 36:1020-1025.
  • [3]Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol. 2012; 11:67. BioMed Central Full Text
  • [4]Takada A, Miki T, Kuno A, Kouzu H, Sunaga D, Itoh T et al.. Role of ER stress in ventricular contractile dysfunction in type 2 diabetes. PLoS One. 2012; 7:e39893.
  • [5]Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T et al.. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007; 100:914-922.
  • [6]Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M et al.. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007; 13:619-624.
  • [7]Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ Res. 2011; 109:502-511.
  • [8]Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A et al.. The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res. 2011; 91:330-339.
  • [9]Kanamori H, Takemura G, Goto K, Tsujimoto A, Ogino A, Takeyama T et al.. Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway. Am J Pathol. 2013; 182:701-713.
  • [10]Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK et al.. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem. 2013; 288:915-926.
  • [11]Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A et al.. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 2013; 19:1478-1488.
  • [12]Watanabe T, Takemura G, Kanamori H, Goto K, Tsujimoto A, Okada H et al.. Restriction of food intake prevents postinfarction heart failure by enhancing autophagy in the surviving cardiomyocytes. Am J Pathol. 2014; 184:1384-1394.
  • [13]Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial autophagic energy stress responses—macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol. 2015; 308:H1194-H1204.
  • [14]Yamahara K, Yasuda M, Kume S, Koya D, Maegawa H, Uzu T. The role of autophagy in the pathogenesis of diabetic nephropathy. J Diabetes Res. 2013; 2013:193757.
  • [15]He C, Zhu H, Li H, Zou MH, Xie Z. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes. 2013; 62:1270-1281.
  • [16]Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M et al.. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation. 2012; 125:1134-1146.
  • [17]Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT et al.. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med. 2014; 18:1599-1611.
  • [18]Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B et al.. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 2011; 60:1770-1778.
  • [19]Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y et al.. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem. 2013; 288:18077-18092.
  • [20]Eguchi M, Kim YH, Kang KW, Shim CY, Jang Y, Dorval T et al.. Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice. PLoS One. 2012; 7:e30450.
  • [21]Hou X, Hu Z, Xu H, Xu J, Zhang S, Zhong Y et al.. Advanced glycation endproducts trigger autophagy in cadiomyocyte via RAGE/PI3K/AKT/mTOR pathway. Cardiovasc Diabetol. 2014; 13:78. BioMed Central Full Text
  • [22]Noyan-Ashraf MH, Shikatani EA, Schuiki I, Mukovozov I, Wu J, Li RK et al.. A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation. 2013; 127:74-85.
  • [23]Huisamen B, Genade S, Lochner A. Signalling pathways activated by glucagon-like peptide-1 (7-36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc J Afr. 2008; 19:77-83.
  • [24]Zeng Y, Li C, Guan M, Zheng Z, Li J, Xu W et al.. The DPP-4 inhibitor sitagliptin attenuates the progress of atherosclerosis in apolipoprotein-E-knockout mice via AMPK- and MAPK-dependent mechanisms. Cardiovasc Diabetol. 2014; 13:32. BioMed Central Full Text
  • [25]Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011; 13:132-141.
  • [26]Jing Yin J, Bo Li Y, Ming Cao M, Wang Y. Liraglutide improves the survival of INS-1 cells by promoting macroautophagy. Int J Endocrinol Metab. 2013; 11:184-190.
  • [27]Shigeta T, Aoyama M, Bando YK, Monji A, Mitsui T, Takatsu M et al.. Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions. Circulation. 2012; 126:1838-1851.
  • [28]Ravassa S, Barba J, Coma-Canella I, Huerta A, López B, González A et al.. The activity of circulating dipeptidyl peptidase-4 is associated with subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2013; 12:143. BioMed Central Full Text
  • [29]Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM et al.. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009; 58:975-983.
  • [30]Sauvé M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M et al.. Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes. 2010; 59:1063-1073.
  • [31]Ussher JR, Baggio LL, Campbell JE, Mulvihill EE, Kim M, Kabir MG et al.. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Mol Metab. 2014; 3:507-517.
  • [32]Hausenloy DJ, Whittington HJ, Wynne AM, Begum SS, Theodorou L, Riksen N et al.. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol. 2013; 12:154. BioMed Central Full Text
  • [33]Kouzu H, Miki T, Tanno M, Kuno A, Yano T, Itoh T et al.. Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart. J Mol Cell Cardiol. 2015; 80:136-145.
  • [34]Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T et al.. Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes. 2009; 58:2863-2872.
  • [35]Shinmura K, Tamaki K, Sano M, Murata M, Yamakawa H, Ishida H et al.. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol. 2011; 50:117-127.
  • [36]Jungraithmayr W, De Meester I, Matheeussen V, Baerts L, Arni S, Weder W. CD26/DPP-4 inhibition recruits regenerative stem cells via stromal cell-derived factor-1 and beneficially influences ischaemia/reperfusion injury in mouse lung transplantation. Eur J Cardiothorac Surg. 2012; 41:1166-1173.
  • [37]Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ et al.. Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res. 2010; 106:129-132.
  • [38]Zheng Q, Su H, Ranek MJ, Wang X. Autophagy and p62 in cardiac proteinopathy. Circ Res. 2011; 109:296-308.
  • [39]Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al.. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005; 122:927-939.
  • [40]Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S et al.. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013; 19:567-575.
  • [41]Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014; 114:1788-1803.
  • [42]French CJ, Zaman AT, McElroy-Yaggy KL, Neimane DK, Sobel BE. Absence of altered autophagy after myocardial ischemia in diabetic compared with nondiabetic mice. Coron Artery Dis. 2011; 22:479-483.
  • [43]French BA, Kramer CM. Mechanisms of post-infarct left ventricular remodeling. Drug Discov Today Dis Mech. 2007; 4:185-196.
  • [44]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990; 81:1161-1172.
  • [45]Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J. 2012; 441:523-540.
  • [46]Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K et al.. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res. 2000; 86:152-157.
  • [47]Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA et al.. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007; 117:1782-1793.
  • [48]Lee JE, Yi CO, Jeon BT, Shin HJ, Kim SK, Jung TS et al.. & #x03B1;-Lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima fatty rats. Cardiovasc Diabetol. 2012; 11:111. BioMed Central Full Text
  • [49]Burkey BF, Li X, Bolognese L, Balkan B, Mone M, Russell M et al.. Acute and chronic effects of the incretin enhancer vildagliptin in insulin-resistant rats. J Pharmacol Exp Ther. 2005; 315:688-695.
  • [50]Dobrian AD, Ma Q, Lindsay JW, Leone KA, Ma K, Coben J et al.. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am J Physiol Endocrinol Metab. 2011; 300:E410-E421.
  • [51]Apaijai N, Pintana H, Chattipakorn SC, Chattipakorn N. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats. Br J Pharmacol. 2013; 169:1048-1057.
  • [52]White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL et al.. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013; 369:1327-1335.
  • [53]Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B et al.. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013; 369:1317-1326.
  文献评价指标  
  下载次数:0次 浏览次数:3次