Journal of Cardiothoracic Surgery | |
Application of peripheral-blood-derived endothelial progenitor cell for treating ischemia-reperfusion injury and infarction: a preclinical study in rat models | |
Qiu-Lin Yin1  Lin-Feng Li1  Heng-Li Lai1  Hong Wang1  Lang Hong1  Zhi-Tang Chang1  | |
[1] Department of Cardiology, Jiangxi Provincial People’s Hospital, No. 92 Aiguo Road, Donghu District, Nanchang, Jiangxi 330006, People’s Republic of China | |
关键词: Transplantation therapy; Myocardial infarction; Left anterior descending artery; Ischemia-reperfusion injury; Peripheral blood-derived endothelial progenitor cells; | |
Others : 828677 DOI : 10.1186/1749-8090-8-33 |
|
received in 2012-09-14, accepted in 2013-01-07, 发布年份 2013 | |
【 摘 要 】
Background
Our aim was to explore the therapeutic effects of peripheral blood-derived endothelial progenitor cells (PB-EPC) in cardiac ischemia-reperfusion infarction models in rats and in in vitro culture systems.
Methods
Rat models of ischemia reperfusion and myocardial infarction were developed using male, Sprague–Dawley rats. Cardiomyocyte and endothelial cell cultures were also established. Therapeutic effects of PB-EPCs were examined in vivo and in vitro in both models. Rats underwent either cardiac ischemia-reperfusion (n = 40) or infarction (n = 56) surgeries and were transplanted with genetically modified EPCs. Treatment efficacy in the ischemia-reperfusion group was measured by infarct size, myocardial contraction velocity, and myeloperoxidase activity after transplantation. Cardiomyocyte survival and endothelial cell apoptosis were investigated in vitro. Vascular growth-associated protein expression and cardiac function were evaluated in the myocardial infarction group by western blot and echocardiography, respectively.
Results
Infarct size and myeloperoxidase activity were significantly decreased in the ischemia-reperfusion group, whereas myocardial contractility was significantly increased in the EPC and Tβ4 groups compared with that in the control group. In contrast, no differences were found between EPC + shRNA Tβ4 and control groups. Rates of cardiomyocyte survival and endothelial cell apoptosis were significantly higher and lower, respectively, in the EPC and Tβ4 groups than in the control group, whereas no differences were found between the EPC + shRNA Tβ4 and control group. Four weeks after myocardial infarction, cardiac function was significantly better in the EPC group than in the control group. Expressions of PDGF, VEGF, and Flk-1 were significantly higher in EPC group than in control group.
Conclusions
Study findings suggest that PB-EPCs are able to protect cardiomyocytes from ischemia-reperfusion or infarction-induced damage via a Tβ4-mediated mechanism. EPCs may also provide protection through increased expression of proteins involved in mediating vascular growth. Autologous peripheral-blood-derived EPCs are readily available for efficient therapeutic use without the concerns of graft rejection.
【 授权许可】
2013 Chang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140714030408294.pdf | 846KB | download | |
Figure 4. | 54KB | Image | download |
Figure 3. | 42KB | Image | download |
Figure 2. | 57KB | Image | download |
Figure 1. | 38KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]World Health Organization: Global atlas on cardiovascular disease prevention and control. Geneva: WHO; 2011. [World Health Organization: WHO; World Heart Federation; World Stroke Organization]
- [2]Yang X, Cohen MV, Downey JM: Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther 2010, 24:225-234.
- [3]Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J: Evidence for cardiomyocyte renewal in humans. Science 2009, 324:98-102.
- [4]Merx MW, Zernecke A, Liehn EA, Schuh A, Skobel E, Butzbach B, Hanrath P, Weber C: Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Res Cardiol 2005, 100:208-216.
- [5]Schuh A, Liehn EA, Sasse A, Schneider R, Neuss S, Weber C, Kelm M, Merx MW: Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Res Cardiol 2009, 104:403-411.
- [6]Dubois C, Liu X, Claus P, Marsboom G, Pokreisz P, Vandenwijngaert S, Dépelteau H, Streb W, Chaothawee L, Maes F: Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction. J Am Coll Cardiol 2010, 55:2232-2243.
- [7]Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Böhm M, Nickenig G: Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005, 353:999-1007.
- [8]Yao EH, Fukuda N, Matsumoto T, Katakawa M, Yamamoto C, Han Y, Ueno T, Kobayashi N, Matsumoto K: Effects of the antioxidative beta-blocker celiprolol on endothelial progenitor cells in hypertensive rats. Am J Hypertens 2008, 21:1062-1068.
- [9]Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003, 348:593-600.
- [10]Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A: Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 2005, 45:1449-1457.
- [11]Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, Jeerakathil T, Sher F, O’Rourke F, Nasser AM, Schwindt B, Todd K: Endothelial progenitor cells during cerebrovascular disease. Stroke 2005, 36:151-153.
- [12]Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM: Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005, 111:2981-2987.
- [13]Kupatt C, Horstkotte J, Vlastos GA, Pfosser A, Lebherz C, Semisch M, Thalgott M, Büttner K, Browarzyk C, Mages J, Hoffmann R, Deten A, Lamparter M, Müller F, Beck H: Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J 2005, 19:1576-1578.
- [14]Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR: Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 2007, 445:177-182.
- [15]Hinkel R, El-Aouni C, Olson T, Horstkotte J, Mayer S, Muller S, Willhauck M, Spitzweg C, Gildehaus FJ, Münzing W, Hannappel E, Bock-Marquette I, DiMaio JM, Hatzopoulos AK, Boekstegers P, Kupatt C: Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation 2008, 117:2232-2240.
- [16]Zhao Y, Qiu F, Xu S, Yu L, Fu G: Thymosin beta4 activates integrin-linked kinase and decreases endothelial progenitor cells apoptosis under serum deprivation. J Cell Physiol 2011, 226:2798-2806.
- [17]Kim JW, Jin YC, Kim YM, Rhie S, Kim HJ, Seo HG, Lee JH, Ha YL, Chang KC: Daidzein administration in vivo reduces myocardial injury in a rat ischemia/reperfusion model by inhibiting NF-kappaB activation. Life Sci 2009, 84:227-234.
- [18]Rufaihah AJ, Haider HK, Heng BC, Ye L, Tan RS, Toh WS, Tian XF, Sim EK, Cao T: Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regen Med 2010, 5:231-244.
- [19]Jeanes HL, Wanikiat P, Sharif I, Gray GA: Medroxyprogesterone acetate inhibits the cardioprotective effect of estrogen in experimental ischemia-reperfusion injury. Menopause 2006, 13:80-86.
- [20]Shin IW, Jang IS, Lee SH, Baik JS, Park KE, Sohn JT, Lee HK, Chung YK: Propofol has delayed myocardial protective effects after a regional ischemia/reperfusion injury in an in vivo rat heart model. Korean J Anesthesiol 2010, 58:378-382.
- [21]Samsamshariat SA, Samsamshariat ZA, Movahed MR: A novel method for safe and accurate left anterior descending coronary artery ligation for research in rats. Cardiovasc Revasc Med 2005, 6:121-123.
- [22]Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D: Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 2004, 432:466-472.
- [23]Philp D, Huff T, Gho YS, Hannappel E, Kleinman HK: The actin binding site on thymosin beta4 promotes angiogenesis. FASEB J 2003, 17:2103-2105.
- [24]Vincent L, Rafii S: Vascular frontiers without borders: multifaceted roles of platelet-derived growth factor (PDGF) in supporting postnatal angiogenesis and lymphangiogenesis. Cancer Cell 2004, 6:307-309.
- [25]Pietras K, Pahler J, Bergers G, Hanahan D: Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 2008, 5:e19.
- [26]Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, Donovan M, Cordon-Cardo C, Beug H, Grünert S: Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 2006, 116:1561-1570.
- [27]Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, Cheresh DA: A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 2008, 456:809-813.
- [28]Crottogini A, Laguens R: VEGF165 gene-mediated arteriogenesis and cardioprotection in large mammals with acute myocardial infarction. Confirmation of previous results from other authors. Circ Res 2007, 100:e58.
- [29]Guo WY, Zhang DX, Li WJ, Zhao ZJ, Liu B, Wang HC, Li F: Akt-centered amplification loop plays a critical role in vascular endothelial growth factor/stromal cell-derived factor 1-alpha cross-talk and cardioprotection. Chin Med J (Engl) 2011, 124:3800-3805.
- [30]Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, Dreyfus GD, Gaussin V, Pennell DJ, Vatner DE, Camici PG, Vatner SF: Program of cell survival underlying human and experimental hibernating myocardium. Circ Res 2004, 95:433-440.
- [31]Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation 2002, 105:1135-1143.
- [32]Briguori C, Testa U, Riccioni R, Colombo A, Petrucci E, Condorelli G, Mariani G, D’Andrea D, De Micco F, Rivera NV, Puca AA, Peschle C, Condorelli G: Correlations between progression of coronary artery disease and circulating endothelial progenitor cells. FASEB J 2010, 24:1981-1988.
- [33]Chang WT, Shao ZH, Yin JJ, Mehendale S, Wang CZ, Qin Y, Li J, Chen WJ, Chien CT, Becker LB, Vanden Hoek TL, Yuan CS: Comparative effects of flavonoids on oxidant scavenging and ischemia-reperfusion injury in cardiomyocytes. Eur J Pharmacol 2007, 566:58-66.
- [34]Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007, 25:1015-1024.
- [35]Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM: Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 2012, 21:977-986.
- [36]Schuh A, Kroh A, Konschalla S, Liehn EA, Sobota RM, Biessen EA, Bot I, Sönmez T, Schober A, Marx N, Weber C, Sasse A: Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model. J Cell Mol Med 2012, 10:2311-2320.
- [37]Yao Y, Li Y, Ma G, Liu N, Ju S, Jin J, Chen Z, Shen C, Teng G: In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats. Mol Imaging Biol 2011, 13:303-13.