期刊论文详细信息
Lipids in Health and Disease
The addition of whole soy flour to cafeteria diet reduces metabolic risk markers in wistar rats
Hércia Stampini Duarte Martino1  Sonia Machado Rocha Ribeiro1  Laércio dos Anjos Benjamin2  Maria Inês de Souza Dantas1  Ana Cristina Rocha Espeschit1  Crislaine das Graças de Almeida1  Gláucia Ferreira Andrade1 
[1] Department of Nutrition and Health, CCB-II, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil;Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
关键词: Lipid peroxidation;    Intestinal histomorphometry;    Functional foods;    Cafeteria diet;    Soybean;   
Others  :  829644
DOI  :  10.1186/1476-511X-12-145
 received in 2013-08-15, accepted in 2013-10-08,  发布年份 2013
PDF
【 摘 要 】

Background

Soybean is termed a functional food because it contains bioactive compounds. However, its effects are not well known under unbalanced diet conditions. This work is aimed at evaluating the effect of adding whole soy flour to a cafeteria diet on intestinal histomorphometry, metabolic risk and toxicity markers in rats.

Methods

In this study, 30 male adult Wistar rats were used, distributed among three groups (n = 10): AIN-93 M diet, cafeteria diet (CAF) and cafeteria diet with soy flour (CAFS), for 56 days. The following parameters were measured: food intake; weight gain; serum concentrations of triglycerides, total cholesterol, HDL-c, glycated hemoglobin (HbA1c), aspartate (AST) and alanine (ALT) aminotransferases and Thiobarbituric Acid Reactive Substances (TBARS); humidity and lipid fecal content; weight and fat of the liver. The villous height, the crypt depth and the thickness of the duodenal and ileal circular and longitudinal muscle layers of the animals were also measured.

Results

There was a significant reduction in the food intake in the CAF group. The CAFS showed lower serum concentrations of triglycerides and serum TBARS and a lower percentage of hepatic fat, with a corresponding increase in thickness of the intestinal muscle layers. In the CAF group, an increase in the HbA1c, ALT, lipid excretion, liver TBARS and crypt depth, was observed associated with lower HDL-c and villous height. The addition of soy did not promote any change in these parameters.

Conclusions

The inclusion of whole soy flour in a high-fat diet may be helpful in reducing some markers of metabolic risk; however, more studies are required to clarify its effects on unbalanced diets.

【 授权许可】

   
2013 Andrade et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140714074259809.pdf 698KB PDF download
Figure 2. 58KB Image download
Figure 1. 120KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Spijker JJA, Ca’mara AH, Blanes A: The health transition and biological living standards: adult height and mortality in 20th-century Spain. Econ Hum Biol 2012, 10(3):276-288.
  • [2]Scoaris CR, Rizo GV, Roldi LP, de Moraes SM, de Proença AR, Peralta RM, Natali MR: Effects of cafeteria diet on the jejunum in sedentary and physically trained rats. Nutrition 2010, 26(3):312-320.
  • [3]Campión J, Martinez JA: Ketoconazole, an antifungal agent, protects against adiposity induced by a cafeteria diet. Horm Metab Res 2004, 36(7):485-491.
  • [4]Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L: Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity 2011, 19(6):1109-1117.
  • [5]Esteves EA, Martino HSD, Oliveira FCE, Bressan J, Costa NMB: Chemical composition of a soybean cultivar lacking lipoxygenases (lox2 and lox3). Food Chem 2010, 122(1):238-242.
  • [6]Esteves EA, Bressan J, Costa NM, Martino HS, Donkin SS, Story JA: Modified soybean affects cholesterol metabolism in rats similarly to a commercial cultivar. J Med Food 2011, 14(11):1363-1369.
  • [7]Wilson AW, Nicolosi RJ, Kotyla T, Fleckinger B: Soy protein without isoflavonas reduces aortic total and cholesterol ester concentrations. Nutr Res 2007, 27:498-504.
  • [8]Xiao CW: Health effects of Soy protein and isoflavones in humans. J Nutr 2008, 138(6):1244S-9S.
  • [9]Schönhusen U, Kuhla S, Rudolph PE, Zitnan R, Albrecht D, Huber K, Voigt J, Flöter A, Hammon HM, Metges CC: Alterations in the jejunum of young goats caused by feeding soy protein-based diets. J Anim Physiol Anim Nutr 2010, 94(1):1-14.
  • [10]Battistelli S, Citterio B, Baldelli B, Parlani C, Malatesta M: Histochemical and morpho-metrical study of mouse intestine epithelium after a long term diet containing genetically modified soybean. Eur J Histochem 2010, 54(3):154-157.
  • [11]Chagas CMA, Abdalla DSP, Lima Verde SMM, Damasceno NRT: Influência do isolado protéico da soja e da caseína sobre a peroxidação lipídica. Alim e Nutr 2006, 17(3):309-316.
  • [12]Wang Y, Jones PJH, Ausman LM, Lichtenstein AH: Soy protein reduces triglyceride levels and triglyceride fatty acid fractional synthesis rate in hypercholesterolemic subjects. J Atherosclerosis 2004, 173(2):269-275.
  • [13]Sirtori CR, Galli C, Anderson JW, Arnold A: Nutritional and nutraceutical approaches to dyslipidemia and atherosclerosis prevention: focus on dietary proteins. Atherosclerosis 2009, 203(1):8-17.
  • [14]Fukuy K, Kojima M, Tachibana N, Kohno M, Takamatsu K, Hirotsuka M, Kito M: Effects of soybean β-conglycinin on hepatic lipid metabolism and fecal lipid excretion in normal adult rats. Biosci Biotechn Biochem 2004, 68(5):1153-1155.
  • [15]Sacks FM, Lichtenstein A, Horn LV, Harris W, Kris-Etherton P, Winston M: Soy protein, isoflavones, and cardiovascular health: a summary of a statement for professionals from the American heart association nutrition committee. Arterioscler Thromb Vasc Biol 2006, 26:1689-1692.
  • [16]Demonty I, Lamarche B, Deshaies Y, Jacques H: Role of soy isoflavonas in the hypotriglyceridemic effect of soy protein in the rat. J Nutr Biochem 2002, 13(11):671-677.
  • [17]Heneman KM, Chang HC, Prior RL, Steinberg FM: Soy protein with and without isoflavones fails to substantially increase postprandial antioxidant capacity. J Nutr Biochem 2007, 18(1):46-53.
  • [18]Cederroth CR, Nef S: Soy, phytoestrogens and metabolism: a review. Mol Cell Endocrinol 2009, 304:30-42.
  • [19]Nagajan S: Mechanisms of anti-atherosclerotic functions of soy-based diets. J Nutr Biochem 2010, 21(4):255-260.
  • [20]Oliveira TT, Silva RR, Dornas WCA, Nagem TJ: Flavonóides e aterosclerose. Rev Bras Anal Clin 2010, 42(1):49-54.
  • [21]Martino HSD, Carvalho AW, Silva CO, Dantas MIS, Natal DIG, Ribeiro SMR, Costa NMB: The use hull soybean flour of heat-treated grains does not affect iron bioavailability in rats. ALAN 2011, 61(2):135-142.
  • [22]Naderali EK, Pickavance LC, Wilding JPH, Williams G: Diet-induced endothelial dysfunction in the rat is independent of the degree of increase in total body weight. Clin Sci 2001, 100:635-641.
  • [23]Adolph EF: Urges to eat and drink in rats. Amer J Physiol 1947, 151:110-125.
  • [24]Peterson AD, Baumgardt BR: Food and energy intake of rats Fed diets varying in energy concentration and density. J Nutrition 1971, 101:1057-1068.
  • [25]Torres N, Torre-Villalvazo I, Tovar AR: Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J Nutr Biochem 2006, 17(6):365-373.
  • [26]Zhan S, Ho SC: Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 2005, 81:397-408.
  • [27]Deleprane JB, Chagas MA, Vellarde GC, Ramos CF, Boaventura GT: The impact of Non- and genetically modified soybean diets in aorta wall remodeling. Food Sci 2010, 75(7):T126-131.
  • [28]Inoue N, Nagao K, Sakata K, Yamano N, Gunawardena PER, Han S, Matsui T, Nakamori T, Furuta H, Takamatsu K, Yanagita T: Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo. Lip Health Dis 2011, 10:85. BioMed Central Full Text
  • [29]Barrios-Ramos JP, Garduño-Siciliano L, Loredo M, Chamorro-Cevalos G, Jaramillo-Flores ME: The effect of cocoa, soy, oats and fish oil on metabolic syndrome in rats. J Sci Food Agric 2012, 92:2349-2357.
  • [30]MacQueen HA, Sadler DA, Moore SA, Daya S, Brown JY, Shuker DEG, Seaman M, Wassif WS: Deleterious effects of a cafeteria diet on the livers of nonobese rats. Nutr Res 2007, 27(1):38-47.
  • [31]Garcia-Ruiz C, Baulies A, Mari M, Garcia-Roves PM, Fernandez-Chace JC: Mitochondrial dysfunction in nonalcoholic fatty liver disease and insulin resistance: cause or consequence? Free Radic Res 2013., 5Epub ahead of print
  • [32]Rael LT, Thomas GW, Craun ML, Curtis CG, Bar-Or R, Bar-Or D: Lipid peroxidation and the thiobarbituric acid assay: standardization of the assay when using saturated and unsaturated fatty acids. J Biochem Mol Biol 2004, 37(6):749-752.
  • [33]Folmer V, Soares JCM, Gabriel D, Rocha JBT: A high Fat diet inhibits δ-aminolevulinate dehydratase and increases lipid peroxidation in mice (Mus musculus). J Nutr 2003, 133:2165-2170.
  • [34]Hancock CR, Han D, Chen M, Terada S, Yasuda T, Wright DC, Holloszy JO: High-fat diets cause insulin resistance despite an increase in muscle mitochondria. PNAS 2008, 105(22):7815-7820.
  • [35]Sevilla L, Gumà A, Enrique-Tarancón G, Mora S, Muñoz P, Palacín M, Testar X, Zorzano A: Chronic high-Fat feeding and middle-aging reduce in an additive fashion Glut4 expression in skeletal muscle and adipose tissue. Biochem Biophys Res Commun 1997, 235:89-93.
  • [36]Zierath JR, Houseknecht KL, Gnudi L, Kahn BB: High-Fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes 1997, 46:215-223.
  • [37]Halliwell B, Chirico S: Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 1993, 57(suppl):715S-25S.
  • [38]Barnes S: The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymph Res Biol 2010, 8(1):89-97.
  • [39]Patel RP, Boersma BJ, Crawford JH, Hogg N, Kirk M, Kalyanaraman B, Parks DA, Barnes S, Darley-Usmar V: Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Rad Biol Med 2001, 31(12):1570-1581.
  • [40]Fritz KL, Seppanen CM, Kurzer MS, Csallany AS: The in vivo antioxidant activity of soybean isoflavones in human subjects. Nutrition Research 2003, 23:479-487.
  • [41]Samhan-Arias AK, Tyurina YY, Kagan VE: Lipid antioxidants: free radical scavenging versus regulation of enzymatic lipid peroxidation. J Clin Biochem Nutr 2011, 48(1):91-95.
  • [42]Miller ER, Appel LJ, Risby TH: Effect of dietary patterns on measures of lipid peroxidation results from a randomized clinical trial. Circulation 1998, 98:2390-2395.
  • [43]Birringer M: Hormetics: dietary triggers of an adaptive stress response. Pharm Res 2011, 28(11):2680-94.
  • [44]Li H, Lelliott C, Hakansson P, Ploj K, Tuneld A, Verolin-Johansson M, Benthem L, Carlsoon B, Storlien L: Intestinal, adipose, and liver inflammation in diet-induced obese mice. Metabolism 2008, 57(12):1704-1710.
  • [45]Yokota A, Fukiya S, Saiful Islam KBM, Ooka T, Ogura Y, Hayashi T, Hagio M, Ishizuka S: Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes 2012, 3(5):455-459.
  • [46]Bertol TM, Moraes N, Franke MR: Partial substitution of soybean meal by full-Fat extruded soybean in diets for weaned piglets. Rev Bra de Zootec 2001, 30(3):744-752.
  • [47]Caruso M, Demonty A: Histomorphometry of the small intestine of rats submitted to different proteic sources. Alim Nutr 2005, 16(2):131-136.
  • [48]Soares JL, Donzele JL, Oliveira RFM, Ferreira AS, Ferreira CLLF, Hannas MI, Apolônio LR: Whole processed (fermented and extruded) soybean and soybean meal in replacement of dried milk in diet of piglets weaned at 14 days of age. Rev Bras Zootec 2000, 29(4):1153-1161.
  • [49]Machado FPP, Queiróz JH, Oliveira MGA, Piovesan ND, Peluzio MCG, Costa NMB, Moreira MA: Effects of heating on protein quality of soybean flour devoid of kunitz inhibitor and lectin. Food Chem 2002, 107(2):649-655.
  • [50]Pluske JR, Hampson DJ, Williams IH: Factors influencing the structure and function of the small intestine in the weaned pig: a review. Live Prod Sci 1997, 51:215-236.
  • [51]Reeves PG, Nielsen FH, Fahey GC: AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993, 123:1939-1951.
  • [52]Association of Official Analytical Chemists: Official methods of analysis. Maryland: AOAC; 1997:2.
  • [53]Buege JA, Aust SD: Microsomal lipid peroxidation. Methods Enzymol 1978, 52:302-310.
  • [54]Sabarense CM, Rocha KS, Rosa DD, Martins JH, Pereira MM, Silva FF, Steward BL: A new computational method for hepatic fat micro vesicles counting in histological study in rats. Biochem Biophys Res Commun 2012, 418(2):284-289.
  • [55]Rosa DD, Sales RL, Moraes LFS, Lourenço FC, Neves CA, Sabarense CM, Ribeiro SMR, Peluzio MCG: Flaxseed, olive and fish oil influence plasmatic lipids, lymphocyte migration and morphometry of the intestinal of wistar rats. Acta Cir Bras 2010, 25(3):275-280.
  • [56]SAEG – Sistema de Análises Estatísticas e Genéticas: Desenvolvido pela equipe técnica da fundação arthur bernardes, versão 9.1. Viçosa, MG: Universidade Federal de Viçosa: Software; 1998.
  文献评价指标  
  下载次数:22次 浏览次数:13次