| Cancer Cell International | |
| Nucleofection optimization and in vitro anti-tumourigenic effect of TRAIL-expressing human adipose-derived mesenchymal stromal cells | |
| Zubaidah Zakaria1  Nurul Ain Nasim M Yusof1  Noor Atiqah Fakharuzi1  Moon Nian Lim1  Puteri Baharuddin1  Kamal Shaik Fakiruddin1  | |
| [1] Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), Kuala Lumpur, 50588, Malaysia | |
| 关键词: Apoptosis; Proliferation; Cancer cell lines; TNF-related apoptosis inducing ligand (TRAIL); Nucleofection; Human adipose derived mesenchymal stromal cells; | |
| Others : 1121629 DOI : 10.1186/s12935-014-0122-8 |
|
| received in 2014-07-01, accepted in 2014-11-04, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Tumour homing capacity of engineered human adipose-derived mesenchymal stromal cells (ADMSCs) expressing anti-tumour agents might be the key for a much safer and yet efficient targeted tumour therapy. However, ADMSCs exhibit resistant to most gene transfection techniques and the use of highly efficient viral vectors has several disadvantages primarily concerning safety risk. Here, we optimized the use of highly efficient and safe nucleofection-based transfection using plasmid encoded for TNF-Related Apoptosis Inducing Ligand (TRAIL) into ADMSCs and investigated the potential anti-tumourigenic of TRAIL-expressing ADMSCs (ADMSCs-TRAIL) on selected cancer models in vitro.
Methods
Different concentration of TRAIL-encoded plasmid and ADMSCs were nucleofected and the percentage of fluorescence cells were analyzed to determine the optimal condition. TRAIL protein and mRNA were validated in nucloeofected ADMSCs using ELISA and RT-PCR respectively. Evaluation of TRAIL specific death receptors were performed on both tumours (A549/lung tumour, LN18/glioblastoma and HepG2/hepatocellular carcinoma) and haematological malignant lines (REH/acute lymphocytic leukaemia, K562/chronic myelogenous leukaemia and KMS-28BM/multiple myeloma) using flow cytometry. ADMSCs-TRAIL was subsequently assessed for anti-tumourigenic properties using both proliferation assay (MTS assay) and apoptosis assay (Annexin-V / Propidium Iodide staining).
Results
Nucleofection showed increased total plasmid concentration (2 μg to 8 μg) resulted in significantly higher reporter expression (11.33% to 39.7%) with slight reduction on cells viability (~10%). ADMSCs-TRAIL significantly inhibited ~50% of cell proliferation in LN18, signifying sensitivity of the cell to ADMSCs-TRAIL mediated inhibition. Inhibition of both tumour and malignant lines proliferation by ADMSCs-TRAIL conditioned medium noticed in HepG2, A549 and REH respectively, whereas K562 and KMS-28BM malignant lines exhibit resistant to ADMSCs-TRAIL mediated inhibition. Moreover, we found that native ADMSCs alone were capable of inducing apoptosis in both LN18 and HepG2 tumour lines, despite substantial increased on the percentage of apoptosis by ADMSCs-TRAIL.
Conclusion
ADMSCs-TRAIL selectively inhibit cancer model and markedly induces apoptosis. Through investigation of the specific TRAIL death receptors expression, we saw that the receptors expression did influence the sensitivity of some but not all cancer lines to TRAIL-mediated inhibition. This study provides further insight into the anti-tumourigenic potential of ADMSCs-TRAIL on different cancer models.
【 授权许可】
2014 Fakiruddin et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150212031802572.pdf | 1941KB | ||
| Figure 5. | 85KB | Image | |
| Figure 4. | 65KB | Image | |
| Figure 3. | 108KB | Image | |
| Figure 2. | 98KB | Image | |
| Figure 1. | 85KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004, 36(4):568-584.
- [2]Aurich H, Sgodda M, Kaltwaßer P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B: Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 2009, 58(4):570-581.
- [3]Seo MJ, Suh SY, Bae YC, Jung JS: Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005, 328(1):258-264.
- [4]Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T: Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007, 46(1):219-228.
- [5]Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B: Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 2013, 129:89-115.
- [6]Safford KM, Hicok KC, Safford SD, Halvorsen Y-DC, Wilkison WO, Gimble JM, Rice HE: Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 2002, 294(2):371-379.
- [7]Gao S, Zhao P, Lin C, Sun Y, Wang Y, Zhou Z, Yang D, Wang X, Xu H, Zhou F, Cao L, Zhou W, Ning K, Chen X, Xu J: Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng A 2014, 20(7–8):1271-1284.
- [8]Li J, Zhu L, Qu X, Li J, Lin R, Liao L, Wang J, Wang S, Xu Q, Zhao RC: Stepwise differentiation of human adipose-derived mesenchymal stem cells toward definitive endoderm and pancreatic progenitor cells by mimicking pancreatic development in vivo. Stem Cells Dev 2013, 22(10):1576-1587.
- [9]Bhonde RR, Sheshadri P, Sharma S, Kumar A: Making surrogate beta-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol 2014, 46:90-102.
- [10]Dave SD, Vanikar AV, Trivedi HL: In-vitro generation of human adipose tissue derived insulin secreting cells: up-regulation of Pax-6, Ipf-1 and Isl-1. Cytotechnology 2014, 66(2):299-307.
- [11]D'Souza N, Burns JS, Grisendi G, Candini O, Veronesi E, Piccinno S, Horwitz EM, Paolucci P, Conte P, Dominici M: MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. Adv Biochem Eng/Biotechno 2012.
- [12]Stagg J: Mesenchymal stem cells in cancer. Stem Cell Rev 2008, 4(2):119-124.
- [13]Sun XY, Nong J, Qin K, Warnock GL, Dai LJ: Mesenchymal stem cell-mediated cancer therapy: A dual-targeted strategy of personalized medicine. World J Stem Cells 2011, 3(11):96-103.
- [14]Shahrokhi S, Daneshmandi S, Menaa F: Tumor necrosis factor-alpha/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice. Hum Gene Ther 2014, 25(3):240-253.
- [15]Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA: Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress.Cell stress & chaperones 2014.
- [16]Hajizadeh-Sikaroodi S, Hosseini A, Fallah A, Estiri H, Noormohammadi Z, Salehi M, Ghaderian SM, Akhavan Niyaki H, Soleimani M, Kazemi B: Lentiviral Mediating Genetic Engineered Mesenchymal Stem Cell for Releasing IL-27 as a Gene Therapy Approach for Autoimmune Diseases.Cell journal 2013, 16(3).
- [17]Wang ZH, Li XL, He XJ, Wu BJ, Xu M, Chang HM, Zhang XH, Xing Z, Jing XH, Kong DM, Kou XH, Yang YY: Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al.] 2014, 47(4):279-286.
- [18]Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K: Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 2009, 106(12):4822-4827.
- [19]Thomas CE, Ehrhardt A, Kay MA: Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003, 4(5):346-358.
- [20]Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Körner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Müller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K: New non-viral method for gene transfer into primary cells. Methods 2004, 33(2):151-163.
- [21]Zaragosi L-E, Billon N, Ailhaud G, Dani C: Nucleofection Is a Valuable Transfection Method for Transient and Stable Transgene Expression in Adipose Tissue-Derived Stem Cells. Stem Cells 2007, 25(3):790-797.
- [22]Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C, Colombo MP, Versura P, D'Errico-Grigioni A, Ferri E, Baccarani M, Lemoli RM: Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem Cells 2006, 24(2):454-461.
- [23]Distler JHW, Jüngel A, Kurowska-Stolarska M, Michel BA, Gay RE, Gay S, Distler O: Nucleofection: a new, highly efficient transfection method for primary human keratinocytes*. Exp Dermatol 2005, 14(4):315-320.
- [24]Almasan A, Ashkenazi A: Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 2003, 14(3–4):337-348.
- [25]Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C: TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials 2009, 4(1):34-41.
- [26]Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H: Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004, 11(14):1155-1164.
- [27]Mahon MJ: Vectors bicistronically linking a gene of interest to the SV40 large T antigen in combination with the SV40 origin of replication enhance transient protein expression and luciferase reporter activity. BioTechniques 2011, 51(2):119-126.
- [28]Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A: Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997, 277(5327):818-821.
- [29]Hao XS, Hao JH, Liu FT, Newland AC, Jia L: Potential mechanisms of leukemia cell resistance to TRAIL-induced apopotosis. Apoptosis: Int J Programmed Cell Death 2003, 8(6):601-607.
- [30]Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F 3rd: Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 2011, 29(1):11-19.
- [31]Tabe Y, Jin L, Mills GB, Tsutsumi-Ishii Y, Andreeff M, Konopleva M: Mesenchymal Stem Cells Promote Survival of Leukemic Cells Via Integrin-Linked Kinase (ILK)-Dependent Akt and STAT3 Activation: Implications for Leukemia Therapy. ASH Ann Meet Abstr 2004, 104(11):3377.
- [32]Rodríguez-Pardo VM, Aristizabal JA, Jaimes D, Quijano SM, de los Reyes I, Herrera MV, Solano J, Vernot JP: Mesenchymal stem cells promote leukaemic cells aberrant phenotype from B-cell acute lymphoblastic leukaemia. Hematol/Oncol Stem Cell Ther 2013, 6(3–4):89-100.
- [33]Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL: Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett 2011, 305(1):8-20.
- [34]He S-Q, Rehman H, Gong M-G, Zhao Y-Z, Huang Z-Y, Li C-H, Zhang W-G, Chen X-P: Inhibiting survivin expression enhances TRAIL-induced tumoricidal activity in human hepatocellular carcinoma via cell cycle arrest. Cancer Biol Therapy 2007, 6(8):1258-1268.
- [35]Luan Z, He Y, He F, Chen Z: Rocaglamide overcomes tumor necrosis factorrelated apoptosisinducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase8 through cellular FLICElikeinhibitory protein downregulation. Molecular medicine reports 2014.
- [36]Kim EY, Yu JS, Yang M, Kim AK: Sub-toxic dose of apigenin sensitizes HepG2 cells to TRAIL through ERK-dependent up-regulation of TRAIL receptor DR5. Mole Cells 2013, 35(1):32-40.
- [37]Hecht E, Zago M, Sarill M, Rico de Souza A, Gomez A, Matthews J, Hamid Q, Eidelman DH, Baglole CJ: Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation.Toxicol Appl Pharmacol 2014.
- [38]Martin KR, Wooden A: Tart cherry juice induces differential dose-dependent effects on apoptosis, but not cellular proliferation, in MCF-7 human breast cancer cells. J Med Food 2012, 15(11):945-954.
PDF