期刊论文详细信息
Journal of Neuroinflammation
Neuregulin-1 inhibits neuroinflammatory responses in a rat model of organophosphate-nerve agent-induced delayed neuronal injury
Byron D Ford5  Monique C Surles-Zeigler5  Timothy J Distel5  Alicia S Gates5  Teclemichael Tewolde5  Donald A Bruun1  Todd E White5  Kyndra C Stovall3  Cuimei Liu4  Gregory D Ford2  Pamela J Lein1  Yonggang Li5 
[1] Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis 95616, CA, USA;Department of Biology, Morehouse College, 830 Westview Drive SW, Atlanta 30310, GA, USA;Department of Physiology, Emory University, 201 Dowman Dr., Atlanta 30322, GA, USA;Institute of Infectious Disease, Xiangya Hospital, Central-South University, No.9 Chegongzhuang Avenue, Changsha 100044, China;Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta 30310, GA, USA
关键词: Rat model;    Nerve agent;    Neuroprotection;    Microarray;    Immunity;    Delayed neurotoxicity;    Cytokine;    Chemokine;    Apoptosis;   
Others  :  1227101
DOI  :  10.1186/s12974-015-0283-y
 received in 2014-12-19, accepted in 2015-03-17,  发布年份 2015
PDF
【 摘 要 】

Background

Neuregulin-1 (NRG-1) has been shown to act as a neuroprotectant in animal models of nerve agent intoxication and other acute brain injuries. We recently demonstrated that NRG-1 blocked delayed neuronal death in rats intoxicated with the organophosphate (OP) neurotoxin diisopropylflurophosphate (DFP). It has been proposed that inflammatory mediators are involved in the pathogenesis of OP neurotoxin-mediated brain damage.

Methods

We examined the influence of NRG-1 on inflammatory responses in the rat brain following DFP intoxication. Microglial activation was determined by immunohistchemistry using anti-CD11b and anti-ED1 antibodies. Gene expression profiling was performed with brain tissues using Affymetrix gene arrays and analyzed using the Ingenuity Pathway Analysis software. Cytokine mRNA levels following DFP and NRG-1 treatment was validated by real-time reverse transcription polymerase chain reaction (RT-PCR).

Results

DFP administration resulted in microglial activation in multiple brain regions, and this response was suppressed by treatment with NRG-1. Using microarray gene expression profiling, we observed that DFP increased mRNA levels of approximately 1,300 genes in the hippocampus 24 h after administration. NRG-1 treatment suppressed by 50% or more a small fraction of DFP-induced genes, which were primarily associated with inflammatory responses. Real-time RT-PCR confirmed that the mRNAs for pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly increased following DFP exposure and that NRG-1 significantly attenuated this transcriptional response. In contrast, tumor necrosis factor α (TNFα) transcript levels were unchanged in both DFP and DFP + NRG-1 treated brains relative to controls.

Conclusion

Neuroprotection by NRG-1 against OP neurotoxicity is associated with the suppression of pro-inflammatory responses in brain microglia. These findings provide new insight regarding the molecular mechanisms involved in the neuroprotective role of NRG-1 in acute brain injuries.

【 授权许可】

   
2015 Li et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150927094345988.pdf 2060KB PDF download
20150927094345988.pdf 2060KB PDF download
Figure 7. 32KB Image download
Figure 6. 38KB Image download
Figure 5. 44KB Image download
Figure 4. 55KB Image download
Figure 3. 70KB Image download
Figure 2. 98KB Image download
Figure 1. 133KB Image download
Figure 7. 32KB Image download
Figure 6. 38KB Image download
Figure 5. 44KB Image download
Figure 4. 55KB Image download
Figure 3. 70KB Image download
Figure 2. 98KB Image download
Figure 1. 133KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Jett DA: Neurological aspects of chemical terrorism. Ann Neurol 2007, 61(1):9-13.
  • [2]Collombet JM: Nerve agent intoxication: recent neuropathophysiological findings and subsequent impact on medical management prospects. Toxicol Appl Pharmacol 2011, 255(3):229-41.
  • [3]UN, United Nations Secretary General Report: United Nations mission to investigate allegations of the use of chemical weapons in the Syrian Arab Republic. Report on the alleged use of chemical weapons in the Ghouta Area of Damascus on 21 August 2013. http://www.un.org/disarmament/content/slideshow/Secretary_General_Report_of_CW_Investigation.pdf. 2013.
  • [4]Newmark J: The birth of nerve agent warfare: lessons from Syed Abbas Foroutan. Neurology 2004, 62(9):1590-6.
  • [5]Okudera H: Clinical features on nerve gas terrorism in Matsumoto. J Clin Neurosci 2002, 9(1):17-21.
  • [6]Okumura T, Hisaoka T, Yamada A, Naito T, Isonuma H, Okumura S, et al.: The Tokyo subway sarin attack - lessons learned. Toxicol Appl Pharmacol 2005, 207(2 Suppl):471-476.
  • [7]Yanagisawa N, Morita H, Nakajima T: Sarin experiences in Japan: acute toxicity and long-term effects. J Neurol Sci 2006, 249(1):76-85.
  • [8]Hoffman A, Eisenkraft A, Finkelstein A, Schein O, Rotman E, Dushnitsky T: A decade after the Tokyo sarin attack: a review of neurological follow-up of the victims. Mil Med 2007, 172(6):607-610.
  • [9]Li Y, Lein PJ, Liu C, Bruun DA, Giulivi C, Ford GD, et al.: Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury. Toxicol Appl Pharmacol 2012, 262(2):194-204.
  • [10]Falls DL, Rosen KM, Corfas G, Lane WS, Fischbach GD: ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 1993, 72(5):801-815.
  • [11]Marchionni MA, Goodearl AD, Chen MS, Bermingham-McDonogh O, Kirk C, Hendricks M, et al.: Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 1993, 362:312-318.
  • [12]Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, et al.: Identification of heregulin, a specific activator of p185erbB2. Science 1992, 256(5060):1205-1210.
  • [13]Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y, et al.: Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 1992, 69(3):559-572.
  • [14]Ho WH, Armanini MP, Nuijens A, Phillips HS, Osheroff PL: Sensory and motor neuron-derived factor. A novel heregulin variant highly expressed in sensory and motor neurons. J Biol Chem 1995, 270(44):26722.
  • [15]Deshpande LS, Carter DS, Blair RE, DeLorenzo RJ: Development of a prolonged calcium plateau in hippocampal neurons in rats surviving status epilepticus induced by the organophosphate diisopropylfluorophosphate. Toxicol Sci 2010, 116(2):623-631.
  • [16]Lemercier G, Carpentier P, Sentenac-Roumanou H, Morelis P: Histological and histochemical changes in the central nervous system of the rat poisoned by an irreversible anticholinesterase organophosphorus compound. Acta Neuropathol (Berl) 1983, 61(2):123-129.
  • [17]McDonough JH Jr, McLeod CG Jr, Nipwoda MT: Direct microinjection of soman or VX into the amygdala produces repetitive limbic convulsions and neuropathology. Brain Res 1987, 435(1–2):123-137.
  • [18]McLeod CG Jr, Singer AW, Harrington DG: Acute neuropathology in soman poisoned rats. Neurotoxicology 1984, 5(2):53-57.
  • [19]Petras JM: Neurology and neuropathology of Soman-induced brain injury: an overview. J Exp Anal Behav 1994, 61(2):319-329.
  • [20]Zimmer LA, Ennis M, Shipley MT: Soman-induced seizures rapidly activate astrocytes and microglia in discrete brain regions. J Comp Neurol 1997, 378(4):482-492.
  • [21]Collombet JM, Four E, Bernabe D, Masqueliez C, Burckhart MF, Baille V, et al.: Soman poisoning increases neural progenitor proliferation and induces long-term glial activation in mouse brain. Toxicology 2005, 208(3):319-334.
  • [22]Dhote F, Peinnequin A, Carpentier P, Baille V, Delacour C, Foquin A, et al.: Prolonged inflammatory gene response following soman-induced seizures in mice. Toxicology 2007, 238(2–3):166-176.
  • [23]Dillman JF 3rd, Phillips CS, Kniffin DM, Tompkins CP, Hamilton TA, Kan RK: Gene expression profiling of rat hippocampus following exposure to the acetylcholinesterase inhibitor soman. Chem Res Toxicol 2009, 22(4):633-638.
  • [24]Chapman S, Kadar T, Gilat E: Seizure duration following sarin exposure affects neuro-inflammatory markers in the rat brain. Neurotoxicology 2006, 27(2):277-283.
  • [25]Johnson EA, Kan RK: The acute phase response and soman-induced status epilepticus: temporal, regional and cellular changes in rat brain cytokine concentrations. J Neuroinflammation 2010, 7:40. BioMed Central Full Text
  • [26]Svensson I, Waara L, Johansson L, Bucht A, Cassel G: Soman-induced interleukin-1 beta mRNA and protein in rat brain. Neurotoxicology 2001, 22(3):355-362.
  • [27]Williams AJ, Berti R, Yao C, Price RA, Velarde LC, Koplovitz I, et al.: Central neuro-inflammatory gene response following soman exposure in the rat. Neurosci Lett 2003, 349(3):147-50.
  • [28]Shih T, Whalley CE, Valdes JJ: A comparison of cholinergic effects of HI-6 and pralidoxime-2-chloride (2-PAM) in soman poisoning. Toxicol Lett 1991, 55(2):131-47.
  • [29]Kim Y-B, Hur G, Shin S, Sok D, Kang J, Lee Y: Organophosphate-induced brain injuries: delayed apoptosis mediated by nitric oxide. Environ Toxicol Pharm 1999, 7:147-52.
  • [30]Li Y, Lein PJ, Liu C, Bruun DA, Tewolde T, Ford G, et al.: Spatiotemporal pattern of neuronal injury induced by DFP in rats: a model for delayed neuronal cell death following acute OP intoxication. Toxicol Appl Pharmacol 2011, 253(3):261-9.
  • [31]De Sarro G, Di Paola ED, De Sarro A, Vidal MJ: L-arginine potentiates excitatory amino acid-induced seizures elicited in the deep prepiriform cortex. Eur J Pharmacol 1993, 230(2):151-8.
  • [32]Li Y, Xu Z, Ford GD, Croslan DR, Cairobe T, Li Z, et al.: Neuroprotection by neuregulin-1 in a rat model of permanent focal cerebral ischemia. Brain Res 2007, 1184:277-83.
  • [33]Colton CA: Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009, 4(4):399-418.
  • [34]Iadecola C, Anrather J: The immunology of stroke: from mechanisms to translation. Nat Med 2011, 17(7):796-808.
  • [35]Raveh L, Brandeis R, Gilat E, Cohen G, Alkalay D, Rabinovitz I, et al.: Anticholinergic and antiglutamatergic agents protect against soman-induced brain damage and cognitive dysfunction. Toxicol Sci 2003, 75(1):108-16.
  • [36]Spradling KD, Lumley LA, Robison CL, Meyerhoff JL, Dillman JF 3rd: Transcriptional analysis of rat piriform cortex following exposure to the organophosphonate anticholinesterase sarin and induction of seizures. J Neuroinflammation 2011, 8:83. BioMed Central Full Text
  • [37]Kaplan M, Aviram M: Oxidized low density lipoprotein: Atherogenic and proinflammatory characteristics during macrophage foam cell formation. An inhibitory role for nutritional antioxidants and serum paraoxonase. Clin Chem Lab Med 1999, 37(8):777-87.
  • [38]Moore KW, de Waal MR, Coffman RL, O’Garra A: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001, 19:683-765.
  • [39]Solomon W, Wilson NO, Anderson L, Pitts S, Patrickson J, Liu M, et al.: Neuregulin-1 attenuates mortality associated with experimental cerebral malaria. J Neuroinflammation 2014, 11:9. BioMed Central Full Text
  • [40]Dimayuga FO, Ding Q, Keller JN, Marchionni MA, Seroogy KB, Bruce-Keller AJ: The neuregulin GGF2 attenuates free radical release from activated microglial cells. J Neuroimmunol 2003, 136(1–2):67-74.
  • [41]Xu Z, Ford GD, Croslan DR, Jiang J, Gates A, Allen R, et al.: Neuroprotection by neuregulin-1 following focal stroke is associated with the attenuation of ischemia-induced pro-inflammatory and stress gene expression. Neurobiol Dis 2005, 19(3):461-70.
  • [42]Calvo M, Zhu N, Grist J, Ma Z, Loeb JA, Bennett DL: Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia 2011, 59(4):554-68.
  • [43]Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA, et al.: Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J Neurosci 2010, 30(15):5437-50.
  • [44]Clement CM, Thomas LK, Mou Y, Croslan DR, Gibbons GH, Ford BD: Neuregulin-1 attenuates neointimal formation following vascular injury and inhibits the proliferation of vascular smooth muscle cells. J Vasc Res 2007, 44(4):303-12.
  • [45]Watanabe T, Sato K, Itoh F, Iso Y: Pathogenic involvement of heregulin-beta(1) in anti-atherogenesis. Regul Pept 2012, 175(1–3):11-4.
  • [46]Xu G, Watanabe T, Iso Y, Koba S, Sakai T, Nagashima M, et al.: Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis. Circ Res 2009, 105(5):500-10.
  • [47]Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, Elliott PJ, et al.: Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab 2002, 22(9):1068-79.
  • [48]Shohami E, Novikov M, Bass R, Yamin A, Gallily R: Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb Blood Flow Metab 1994, 14(4):615-9.
  • [49]Shyu WC, Lin SZ, Chiang MF, Yang HI, Thajeb P, Li H: Neuregulin-1 reduces ischemia-induced brain damage in rats. Neurobiol Aging 2004, 25(7):935-44.
  • [50]Xu Z, Jiang J, Ford G, Ford BD: Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochem Biophys Res Commun 2004, 322(2):440-6.
  • [51]Iaci JF, Ganguly A, Finklestein SP, Parry TJ, Ren J, Saha S, et al.: Glial growth factor 2 promotes functional recovery with treatment initiated up to 7 days after permanent focal ischemic stroke. Neuropharmacology 2010, 59(7–8):640-9.
  • [52]Xu Z, Croslan DR, Harris AE, Ford GD, Ford BD: Extended therapeutic window and functional recovery after intraarterial administration of neuregulin-1 after focal ischemic stroke. J Cereb Blood Flow Metab 2006, 26(4):527-35.
  • [53]Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, et al.: A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol 2010, 55(18):1907-14.
  • [54]Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, et al.: Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail 2011, 13(1):83-92.
  • [55]Lok J, Wang H, Murata Y, Zhu HH, Qin T, Whalen MJ, et al.: Effect of neuregulin-1 on histopathological and functional outcome after controlled cortical impact in mice. J Neurotrauma 2007, 24(12):1817-22.
  文献评价指标  
  下载次数:60次 浏览次数:10次