期刊论文详细信息
Cellular Physiology and Biochemistry
The Differentially Expressed Circular RNAs in the Substantia Nigra and Corpus Striatum of Nrf2-Knockout Mice
Jun-Hui Yang1 
关键词: Circular RNAs;    Nrf2;    Oxidative stress;    Microarray;    Neuroprotection;   
DOI  :  10.1159/000494478
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background/Aims The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a protective role in both acute neuronal damage and chronic neurodegeneration-related oxidative stress. Circular RNAs (circRNAs) are involved with various diseases in the central nervous system (CNS). This study aimed to identify the key circRNAs involved in Nrf2-neuroprotection against oxidative stress. Methods The differentially expressed circRNAs (DEcircRNAs) in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice were identified by microarray analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of selected DEcircRNAs in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice. Based on our previous microarray analysis of the differentially expressed mRNAs (DEmRNAs) in the substantia nigra and corpus striatum between Nrf2 (-/-) and Nrf2 (+/+) mice, the DEcircRNA-miRNA-DEmRNA interaction network was constructed. Functional annotation of DEmRNAs that shared the same binding miRNAs with DEcircRNAs was performed using gene ontology (GO) and pathway analyses. Results A total of 65 and 150 significant DEcircRNAs were obtained in the substantia nigra and corpus striatum of Nrf2 (-/-) mice, respectively, and seventeen shared DEcircRNAs were found in both these two tissues. The qRT-PCR results were generally consistent with the microarray results. The DEcircRNA-miRNA-DEmRNA interaction network and pathway analysis indicated that mmu_circRNA_34132, mmu_circRNA_017077 and mmu-circRNA-015216 might be involved with Nrf2-mediated neuroprotection against oxidative stress. Mmu_circRNA_015216 and mmu_circRNA_017077 might play roles in the Nrf2-related transcriptional misregulation and Nrf2-mediated processes of rheumatoid arthritis, respectively. In addition to these two processes, mmu_circRNA_34132 may be a potential regulator of Nrf2-mediated protection for diabetes mellitus and Nrf2-mediated defence against ROS in hearts. Conclusion In conclusion, our study identified the key DEcircRNAs in the substantia nigra and corpus striatum of Nrf2 (-/-) mice, which might provide new clues for further exploring the mechanism of Nrf2-mediated neuroprotection against oxidative stress and other Nrf2-mediated processes.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201910252757618ZK.pdf 2084KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:16次