期刊论文详细信息
Journal of Biological Engineering
Targeting a heterologous protein to multiple plant organelles via rationally designed 5′ mRNA tags
Matthew D Mattozzi2  Jeffrey C Way2  Pamela A Silver2  Mathias J Voges1 
[1] Department of Biotechnology, Technische Universiteit Delft, 2628 BC, Delft, Netherlands;Chimerion Biotechnology Inc, Cambridge, MA 02138, USA
关键词: Nicotiana benthamiana;    Organelle;    Cytosol;    Chloroplast;    Peroxisome;    Localization;    Signal embedding;    Alternative splicing;    Protein targeting;   
Others  :  805320
DOI  :  10.1186/1754-1611-7-20
 received in 2013-03-06, accepted in 2013-08-17,  发布年份 2013
PDF
【 摘 要 】

Background

Plant bioengineers require simple genetic devices for predictable localization of heterologous proteins to multiple subcellular compartments.

Results

We designed novel hybrid signal sequences for multiple-compartment localization and characterize their function when fused to GFP in Nicotiana benthamiana leaf tissue. TriTag-1 and TriTag-2 use alternative splicing to generate differentially localized GFP isoforms, localizing it to the chloroplasts, peroxisomes and cytosol. TriTag-1 shows a bias for targeting the chloroplast envelope while TriTag-2 preferentially targets the peroxisomes. TriTag-3 embeds a conserved peroxisomal targeting signal within a chloroplast transit peptide, directing GFP to the chloroplasts and peroxisomes.

Conclusions

Our novel signal sequences can reduce the number of cloning steps and the amount of genetic material required to target a heterologous protein to multiple locations in plant cells. This work harnesses alternative splicing and signal embedding for engineering plants to express multi-functional proteins from single genetic constructs.

【 授权许可】

   
2013 Voges et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708074645629.pdf 2720KB PDF download
Figure 5. 14KB Image download
Figure 6. 192KB Image download
Figure 5. 180KB Image download
Figure 4. 130KB Image download
Figure 3. 33KB Image download
Figure 2. 37KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 5.

【 参考文献 】
  • [1]Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-JJ, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C: Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 2007, 25:593-599.
  • [2]Maier A, Fahnenstich H, von-Caemmerer S, Engqvist MKM, Weber APM, Flügge U-I, Maurino VG: Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement. Front Plant Sci 2012, 3(February):38.
  • [3]Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal Y: Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol 2008, 148:1219-1228.
  • [4]Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC: Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 2012, 14:19-28.
  • [5]Hooks KB, Turner JE, Graham IA, Runions J, Hooks MA: GFP-tagging of Arabidopsis acyl-activating enzymes raises the issue of peroxisome-chloroplast import competition versus dual localization. J Plant Physiol 2012, 169:1631-1638.
  • [6]Zhang X, Hu J: The Arabidopsis chloroplast division protein DYNAMIN-RELATED PROTEIN5B also mediates peroxisome division. Plant Cell 2010, 22:431-442.
  • [7]Baudisch B, Klösgen RB: Dual targeting of a processing peptidase into both endosymbiotic organelles mediated by a transport signal of unusual architecture. Mol Plant 2012, 5:494-503.
  • [8]Brandão MM, Silva-Filho MC: Evolutionary history of Arabidopsis thaliana aminoacyl-tRNA synthetase dual-targeted proteins. Mol Biol Evol 2011, 28:79-85.
  • [9]Severing EI, van-Dijk AD, van-Ham RC: Assessing the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana using proteomics data. BMC Plant Biol 2011, 11:82. BioMed Central Full Text
  • [10]Hyunjong B, Lee D-S, Hwang I: Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 2006, 57:161-169.
  • [11]Que Q, Chilton M-DM, de-Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L: Trait stacking in transgenic crops: challenges and opportunities. GM Crops 2010, 1:220-229.
  • [12]Dafny-Yelin M, Tzfira T: Delivery of multiple transgenes to plant cells. Plant Physiol 2007, 145:1118-1128.
  • [13]Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL: Chewing the fat: beta-oxidation in signalling and development. Trends Plant Sci 2006, 11:124-132.
  • [14]Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F: Photorespiration. The Arabidopsis Book 2010, 8:e0130.
  • [15]Lowenson JD, Clarke S: Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. J Biol Chem 1992, 267:5985-5995.
  • [16]Dinkins RD, Majee SM, Nayak NR, Martin D, Xu Q, Belcastro MP, Houtz RL, Beach CM, Downie AB: Changing transcriptional initiation sites and alternative 5′- and 3′-splice site selection of the first intron deploys Arabidopsis protein isoaspartyl methyltransferase2 variants to different subcellular compartments. Plant J 2008, 55:1-13.
  • [17]Reddy ASN, Rogers MF, Richardson DN, Hamilton M, Ben-Hur A: Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. Front Plant Sci 2012, 3(February):18.
  • [18]Black DL: Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003, 72:291-336.
  • [19]Kalsotra A, Cooper TA: Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011, 12:715-729.
  • [20]Lanyon-Hogg T, Warriner SL, Baker A: Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell 2010, 102:245-263.
  • [21]Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O: Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 2007, 19:3170-3193.
  • [22]Fritz CC, Herget T, Wolter FP, Schell J, Schreier PH: Reduced steady-state levels of rbcS mRNA in plants kept in the dark are due to differential degradation. Proc Natl Acad Sci U S A 1991, 88:4458-4462.
  • [23]Schlessinger A, Yachdav G, Rost B: PROFbval: predict flexible and rigid residues in proteins. Bioinformatics 2006, 22:891-893.
  • [24]Sadler I, Chiang A, Kurihara T, Rothblatt J, Way J, Silver P: A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J Cell Biol 1989, 109(6 Pt 1):2665-2675.
  • [25]Bhushan S, Kuhn C, Berglund A-K, Roth C, Glaser E: The role of the N-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting. FEBS Lett 2006, 580:3966-3972.
  • [26]Emanuelsson O, Brunak S, von-Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007, 2:953-971.
  • [27]Schlüter A, Real-Chicharro A, Gabaldón T, Sánchez-Jiménez F, Pujol A: PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res 2010, 38(Database issue):D800-D805.
  • [28]Stauffer E, Westermann A, Wagner G, Wachter A: Polypyrimidine tract-binding protein homologues from Arabidopsis underlie regulatory circuits based on alternative splicing and downstream control. Plant J 2010, 64:243-255.
  • [29]Coutu C, Brandle J, Brown D, Brown K, Miki B, Simmonds J, Hegedus DD: pORE: a modular binary vector series suited for both monocot and dicot plant transformation. Transgenic Res 2007, 16:771-781.
  • [30]Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C: Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 2010, 20:838-849.
  • [31]Silva-Filho MC: One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Curr Opin Plant Biol 2003, 6:589-595.
  • [32]Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 3rd edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001.
  • [33]Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA, Arkin AP, Keasling JD: BglBricks: A flexible standard for biological part assembly. J Biol Eng 2010, 4:1. BioMed Central Full Text
  • [34]Shetty RP, Endy D, Knight TF: Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2008, 2:5. BioMed Central Full Text
  • [35]Gibson DG: Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 2011, 498:349-361.
  • [36]Davis SJ, Vierstra RD: Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 1998, 36:521-528.
  • [37]Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouzé P, Brunak S: Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 1996, 24:3439-3452.
  • [38]Woods G, Zito K: Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J Vis Exp 2008, 12:10-13.
  文献评价指标  
  下载次数:60次 浏览次数:34次