期刊论文详细信息
Journal of Nanobiotechnology
The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types
Albert Duschl5  Victor Puntes3  Gertie Janneke Oostingh2  Michael Riediker1  Martin Himly5  Jiayuan Zhao4  Ngoc Tran3  Eva Hornig5  Ulrike Tischler5  Matthew Boyles5  Eudald Casals3  Paul Schlinkert5 
[1] Institue for Occupational Medicine (IOM) Singapore, Downtown Core, Singapore;Biomedical Sciences, Salzburg University of Applied Sciences, Puch, Salzburg, Austria;Institute Catalá de Nanotecnologia, Barcelona, Spain;Institute for Work and Health, Lausanne, Switzerland;Department of Molecular Biology, Paris Lodron-University of Salzburg, Hellbrunnerstr. 34, Salzburg, A-5020, Austria
关键词: Surface charge;    ROS production;    Cytotoxicity;    Nanoparticles;    Human lung epithelial cells;   
Others  :  1137469
DOI  :  10.1186/s12951-014-0062-4
 received in 2014-09-15, accepted in 2014-12-18,  发布年份 2015
PDF
【 摘 要 】

Background

Nanoparticle (NPs) functionalization has been shown to affect their cellular toxicity. To study this, differently functionalized silver (Ag) and gold (Au) NPs were synthesised, characterised and tested using lung epithelial cell systems.

Methods

Monodispersed Ag and Au NPs with a size range of 7 to 10 nm were coated with either sodium citrate or chitosan resulting in surface charges from −50 mV to +70 mV. NP-induced cytotoxicity and oxidative stress were determined using A549 cells, BEAS-2B cells and primary lung epithelial cells (NHBE cells). TEER measurements and immunofluorescence staining of tight junctions were performed to test the growth characteristics of the cells. Cytotoxicity was measured by means of the CellTiter-Blue ® and the lactate dehydrogenase assay and cellular and cell-free reactive oxygen species (ROS) production was measured using the DCFH-DA assay.

Results

Different growth characteristics were shown in the three cell types used. A549 cells grew into a confluent mono-layer, BEAS-2B cells grew into a multilayer and NHBE cells did not form a confluent layer. A549 cells were least susceptible towards NPs, irrespective of the NP functionalization. Cytotoxicity in BEAS-2B cells increased when exposed to high positive charged (+65-75 mV) Au NPs. The greatest cytotoxicity was observed in NHBE cells, where both Ag and Au NPs with a charge above +40 mV induced cytotoxicity. ROS production was most prominent in A549 cells where Au NPs (+65-75 mV) induced the highest amount of ROS. In addition, cell-free ROS measurements showed a significant increase in ROS production with an increase in chitosan coating.

Conclusions

Chitosan functionalization of NPs, with resultant high surface charges plays an important role in NP-toxicity. Au NPs, which have been shown to be inert and often non-cytotoxic, can become toxic upon coating with certain charged molecules. Notably, these effects are dependent on the core material of the particle, the cell type used for testing and the growth characteristics of these cell culture model systems.

【 授权许可】

   
2015 Schlinkert et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317091310332.pdf 2195KB PDF download
Figure 8. 45KB Image download
Figure 7. 38KB Image download
Figure 6. 73KB Image download
Figure 5. 29KB Image download
Figure 4. 75KB Image download
Figure 3. 61KB Image download
Figure 2. 66KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Taylor U, Barchanski A, Garrels W, Klein S, Kues W, Barcikowski S, et al.: Toxicity of gold nanoparticles on somatic and reproductive cells. Adv Exp Med Biol 2012, 733:125-33.
  • [2]Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, et al.: Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 2011, 8:36. BioMed Central Full Text
  • [3]Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ: Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 2012, 28:2727-35.
  • [4]Gerber A, Bundschuh M, Klingelhofer D, Groneberg DA: Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol 2013, 8:32. BioMed Central Full Text
  • [5]Sharma VK, Yngard RA, Lin Y: Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 2009, 145:83-96.
  • [6]Bartlomiejczyk T, Lankoff A, Kruszewski M, Szumiel I: Silver nanoparticles - allies or adversaries? Ann Agric Environ Med 2013, 20:48-54.
  • [7]Kruszewski M, Brzoska K, Brunborg G, Asare N, Dobrzynska M-g, Dusinska M, et al.: Toxicity of silver nanomaterials in higher eukaryotes. Adv Mol Toxicol 2011, 5:179-218.
  • [8]Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A: Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int J Nanomedicine 2012, 7:1805-18.
  • [9]Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, et al.: Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 2011, 201:27-33.
  • [10]Ng CT, Li JJ, Gurung RL, Hande MP, Ong CN, Bay BH, et al.: Toxicological profile of small airway epithelial cells exposed to gold nanoparticles. Exp Biol Med (Maywood) 2013, 238:1355-61.
  • [11]Pan Y, Wu Q, Liu R, Shao M, Pi J, Zhao X, et al.: Inhibition effects of gold nanoparticles on proliferation and migration in hepatic carcinoma-conditioned HUVECs. Bioorg Med Chem Lett 2014, 24:679-84.
  • [12]Tiedemann D, Taylor U, Rehbock C, Jakobi J, Klein S, Kues WA, et al.: Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes. Analyst 2014, 139:931-42.
  • [13]Paul W, Shelma R, Sharma CP: Alginate Encapsulated Anacardic Acid-Chitosan Self Aggregated Nanoparticles for Intestinal Delivery of Protein Drugs. J Nanopharm Drug Deliv 2013, 1:82-91.
  • [14]Limpeanchob N, Tiyaboonchai W, Lamlertthon S, Viyoch J, Jaipan S: Efficacy and Toxicity of Amphotericin B-Chitosan Nanoparticles in Mice with Induced Systemic Candidiasis. (Naresuan Univ J) 2013, 14:27-34.
  • [15]Tiyaboonchai W: Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 2013, 11:51-66.
  • [16]Tabata Y, Ikada Y: Macrophage phagocytosis of biodegradable microspheres composed of lactic acid/glycolic acid homo‐and copolymers. J Biomed Mater Res 1988, 22:837-58.
  • [17]Ma Z, Lim TM, Lim L-Y: Pharmacological activity of peroral chitosan–insulin nanoparticles in diabetic rats. Int J Pharm 2005, 293:271-80.
  • [18]Bowman K, Leong KW: Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 2006, 1:117.
  • [19]Garbuzenko OB, Winkler JS, Tomassone MS, Minko T: Biodegradable Janus Nanoparticles for Local Pulmonary Delivery of Hydrophilic and Hydrophobic Molecules to the Lungs. Langmuir 2014, 30(43):12941-12949.
  • [20]Guo X, Zhang X, Ye L, Zhang Y, Ding R, Hao Y, et al.: Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol. J Drug Target 2014, 22:421-7.
  • [21]Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Ali SF: Metal-based nanoparticles and their toxicity assessment. Wires Nanomed Nanobi 2010, 2:544-68.
  • [22]Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311:622-7.
  • [23]Foldbjerg R, Dang DA, Autrup H: Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 2011, 85:743-50.
  • [24]Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ: Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 2007, 41:4158-63.
  • [25]Pourova J, Kottova M, Voprsalova M, Pour M: Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol 2010, 198:15-35.
  • [26]Monopoli MP, Pitek AS, Lynch I, Dawson KA: Formation and characterization of the nanoparticle-protein corona. Methods Mol Biol 2013, 1025:137-55.
  • [27]Casals EPT, Duschl A, Oostingh GJ, Puntes V: Time evolution of the nanoparticle protein corona. Am Chem Soc 2010, 4:10.
  • [28]Saptarshi SR, Duschl A, Lopata AL: Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 2013, 11:26. BioMed Central Full Text
  • [29]Foucaud L, Wilson MR, Brown DM, Stone V: Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 2007, 174:1-9.
  • [30]Bouwmeester H, Lynch I, Marvin HJ, Dawson KA, Berges M, Braguer D, et al.: Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 2011, 5:1-11.
  • [31]Bachand GD, Allen A, Bachand M, Achyuthan KE, Seagrave JC, Brozik SM: Cytotoxicity and inflammation in human alveolar epithelial cells following exposure to occupational levels of gold and silver nanoparticles. J Nanopart Res 2012, 14:1-10.
  • [32]Politis M, Pilinis C, Lekkas T: Ultrafine particles (UFP) and health effects. Dangerous. Like no other PM? Review and analysis. Global NEST J 2008, 10:439-52.
  • [33]Bakand S, Hayes A, Dechsakulthorn F: Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 2012, 24:125-35.
  • [34]Saieg MA, Cury PM, Godleski JJ, Stearns R, Duarte LG, D'Agostino L, et al.: Differential elemental distribution of retained particles along the respiratory tract. Inhal Toxicol 2011, 23:459-67.
  • [35]Löndahl J, Möller W, Pagels JH, Kreyling WG, Swietlicki E, Schmid O. Measurement techniques for respiratory tract deposition of airborne nanoparticles: A critical review. J Aerosol Med Pulm Drug Deliv. 2013.
  • [36]Witschi HR, Last JA. Toxic responses of the respiratory system. Casarett and Doull’s Toxicology: The basic science of poisons. New York: McGraw-Hill; 2001. p. 515–34.
  • [37]Siegmann K, Scherrer L, Siegmann H: Physical and chemical properties of airborne nanoscale particles and how to measure the impact on human health. J Mol Struct THEOCHEM 1998, 458:191-201.
  • [38]Lundborg M, Johard U, Låstbom L, Gerde P, Camner P: Human alveolar macrophage phagocytic function is impaired by aggregates of ultrafine carbon particles. Environ Res 2001, 86:244-53.
  • [39]Blank F, Gehr P, Rothen-Rutishauser B. In vitro human lung cell culture models to study the toxic potential of nanoparticles. Nanotoxicity: From in vitro, in vivo models to health risks. Chichester, England: Wiley; 2009. p. 379–95.
  • [40]Oberdörster G, Oberdörster E, Oberdörster J: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005, 113:823-39.
  • [41]Muhlfeld C, Gehr P, Rothen-Rutishauser B: Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 2008, 138:387.
  • [42]Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al.: In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 1973, 51:1417-23.
  • [43]Albright CD, Jones RT, Hudson EA, Fontana JA, Trump BF, Resau JH: Transformed human bronchial epithelial cells (BEAS-2B) alter the growth and morphology of normal human bronchial epithelial cells in vitro. Cell Biol Toxicol 1990, 6:379-98.
  • [44]Lechner J, LaVeck M: A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J Tissue Cult Methods 1985, 9:43-8.
  • [45]Lieber M, Todaro G, Smith B, Szakal A, Nelson‐Rees W: A continuous tumor‐cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 1976, 17:62-70.
  • [46]Smith B: Cell line A549: a model system for the study of alveolar type II cell function. Am Rev Respir Dis 1977, 115:285-93.
  • [47]AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2008, 3:279-90.
  • [48]Zhang H, Xia T, Meng H, Xue M, George S, Ji Z, et al.: Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. ACS Nano 2011, 5:2756-69.
  • [49]Oostingh GJ, Schlickum S, Friedl P, Schon MP: Impaired induction of adhesion molecule expression in immortalized endothelial cells leads to functional defects in dynamic interactions with lymphocytes. J Investig Dermatol 2007, 127:2253-8.
  • [50]Lin H, Li H, Cho HJ, Bian S, Roh HJ, Lee MK, et al.: Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci 2007, 96:341-50.
  • [51]Qi L-F, Xu Z-R, Li Y, Jiang X, Han X-Y: In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 2005, 11:5136.
  • [52]Hu Y-L, Qi W, Han F, Shao J-Z, Gao J-Q: Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 2011, 6:3351-9.
  • [53]Chen Z, Wang Z, Chen X, Xu H, Liu J: Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. J Nanopart Res 2013, 15:1-9.
  • [54]Wei D, Qian W: Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B: Biointerfaces 2008, 62:136-42.
  • [55]Amidi M, Hennink WE: Chitosan-based formulations of drugs, imaging agents and biotherapeutics. Adv Drug Deliv Rev 2010, 62:1-2.
  • [56]Ojea-Jiménez I, García-Fernández L, Lorenzo J, Puntes VF: Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano 2012, 6:7692-702.
  • [57]Ekstrand-Hammarstrom B, Akfur CM, Andersson PO, Lejon C, Osterlund L, Bucht A: Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B. Nanotoxicology 2012, 6:623-34.
  • [58]Fleischer CC, Payne CK: Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B 2012, 116:8901-7.
  • [59]Izak-Nau E, Voetz M, Eiden S, Duschl A, Puntes VF: Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation. Part Fibre Toxicol 2013, 10:56. BioMed Central Full Text
  • [60]Marambio-Jones C, Hoek EM: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010, 12:1531-51.
  • [61]Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E: The antioxidant properties of serum albumin. FEBS Lett 2008, 582:1783-7.
  • [62]Gaisberger M, Šanovic R, Dobias H, Kolarz P, Moder A, Thalhamer J, et al.: Effects of ionized waterfall aerosol on pediatric allergic asthma. J Asthma 2012, 49:830-8.
  • [63]Lenz A-G, Stoeger T, Cei D, Schmidmeir M, Pfister N, Burgstaller G, Lentner B, Eickelberg O, Meiners S, Schmid O: Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured at air-liquid interface conditions. Am J Respir Cell Mol Biol 2014 526-535
  • [64]Brown DM, Stone V, Findlay P, MacNee W, Donaldson K: Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med 2000, 57:685-91.
  • [65]Robinson JP, Bruner LH, Bassoe CF, Hudson JL, Ward PA, Phan SH: Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism. J Leukoc Biol 1988, 43:304-10.
  • [66]Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, et al.: Physical − chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 2011, 133:2525-34.
  • [67]Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF: Hardening of the Nanoparticle-Protein Corona in Metal (Au, Ag) and Oxide (Fe3O4, CoO, and CeO2) Nanoparticles. Small 2011, 7:3479-86.
  • [68]Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SA, et al.: Review of carbon nanotubes toxicity and exposure–appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 2010, 40:759-90.
  • [69]Li N, Xia T, Nel AE: The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 2008, 44:1689-99.
  • [70]Stone V, Donaldson K: Nanotoxicology: signs of stress. Nat Nanotechnol 2006, 1:23-4.
  • [71]Weissenberg A, Sydlik U, Peuschel H, Schroeder P, Schneider M, Schins RP, et al.: Reactive oxygen species as mediators of membrane-dependent signaling induced by ultrafine particles. Free Radic Biol Med 2010, 49:597-605.
  • [72]Turkevich J, Stevenson PC, Hillier J: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1952, 11:55-75.
  • [73]Jana NR, Gearheart L, Murphy CJ: Seeding Growth for Size Control of 5–40 nm Diameter Gold Nanoparticles. Langmuir 2001, 17:6782-6786.
  文献评价指标  
  下载次数:0次 浏览次数:2次